期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A case study of blasting vibration attenuation based on wave component characteristics 被引量:1
1
作者 Chong Yu Haibo Li +2 位作者 Haozhen Yue Xiaohu Wang Xiang Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1298-1311,共14页
A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak par... A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak particle velocity(PPV),taking into account the attenuation characteristics of P-,S-and R-waves in the blasting vibration wave.Field blasting tests were carried out as a case to specifically apply the proposed equation.In view of the fact that the discrete properties of rock mass will inevitably cause the uncertainty of blasting vibration,we also carried out a probability analysis of PPV uncertainty,and introduced the concept of reliability to evaluate blasting vibration.The results showed that the established attenuation equation had a higher prediction accuracy,and can be considered as a promising equation implemented on more complex sites.The adopted uncertainty analysis method can comprehensively take account of the attenuation law of blasting vibration measured on site and discrete properties of rock masses.The obtained distribution of the PPV uncertainty factor can quantitatively evaluate the reliability of blasting vibration,which is a powerful and necessary supplement to the PPV attenuation equation. 展开更多
关键词 blasting vibration Wave component Field blasting tests Attenuation equation Uncertainty analysis Bayesian theory
下载PDF
Resistance of full-scale beams against close-in explosions.Numerical modeling and field tests
2
作者 A.Prado A.Alañón +5 位作者 R.Castedo A.P.Santos L.M.López M.Chiquito M.Bermejo C.Oggeri 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期35-47,共13页
This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ... This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed. 展开更多
关键词 blast test Numerical simulation LS-DYNA Concrete model Mesh effect Full-scale beams
下载PDF
Dynamic response of UHMWPE plates under combined shock and fragment loading 被引量:1
3
作者 Chun-Zheng Zhao Lu-Sheng Qiang +4 位作者 Rui Zhang Qian-Cheng Zhang Jun-Yang Zhong Zhen-Yu Zhao Tian Jian Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期9-23,共15页
Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subject... Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading. 展开更多
关键词 UHMWPE composite Ballistic performance Combined blast and fragment loading Impact test Finite element simulation
下载PDF
Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration of interface properties 被引量:2
4
作者 Jun WU Xuemei LIU 《Frontiers of Structural and Civil Engineering》 CSCD 2015年第3期323-340,共18页
This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective ... This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element Both the numerical and field blast test indicated that the software LS-DYNA agrees closely with the experimental data SHS composite exhibited high resistance against blast loading 展开更多
关键词 high strength concrete (SHS) engineered cementitious composite interface blast test strain rate effect
原文传递
Dynamic response of ultralight all-metallic sandwich panel with 3D tube cellular core to shallow-buried explosives 被引量:5
5
作者 ZHANG DuJiang ZHAO Zhen Yu +5 位作者 DU ShaoFeng CHEN WeiJie YANG Fan NI ChangYe YANG ZhiKun LU TianJian 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第7期1371-1388,共18页
The underbody of a vehicle system, either military or civil, is typically made of a relatively thin metallic plate, thus vulnerable to mine blast attacks. To improve the blast resistance, a multitude of protective str... The underbody of a vehicle system, either military or civil, is typically made of a relatively thin metallic plate, thus vulnerable to mine blast attacks. To improve the blast resistance, a multitude of protective structures have been proposed as attachments to the thin plate. In the present study, a novel ultralight all-metallic sandwich panel with three-dimensional(3D) tube cellular cores mounted to the vehicle underbody was envisioned as such a protective system. A metallic substrate(mimicking vehicle bottom)was placed above the proposed sandwich panel to construct a sandwich-substrate combinative structure. A series of sandwich panels having 3D tube cellular cores were fabricated via argon protected welding and laser welding. Mechanical responses of the combinative structure subjected to the denotation of 6 kg TNT explosives shallow-buried in dry sand were experimentally measured. Full numerical simulations with the method of finite elements(FE) were subsequently carried out to explore the physical mechanisms underlying the observed dynamic performance and quantify the effects of key geometrical parameters and connection conditions of the protective system. The performance of the proposed sandwich panel under shallow-buried explosives was also compared with competing sandwich constructions having equal mass. Finally, a preliminary optimal design of the 3D tube cellular core was carried out. 展开更多
关键词 shallow-buried explosive sand blast test 3D tube cellular core sandwich panel numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部