期刊文献+
共找到39,590篇文章
< 1 2 250 >
每页显示 20 50 100
Ammonia-induced CuO/13X for H_(2)S removal from simulated blast furnace gas at low temperature
1
作者 Erping Cao Yuhua Zheng +6 位作者 Hao Zhang Jianshan Wang Yuran Li Tingyu Zhu Zhan-guo Zhang Guangwen Xu Yanbin Cui 《Green Energy & Environment》 SCIE EI CAS 2025年第1期139-149,共11页
Blast furnace gas(BFG)is an important by-product energy for the iron and steel industry and has been widely used for heating or electricity generation.However,the undesirable contaminants in BFG(especially H_(2)S)gene... Blast furnace gas(BFG)is an important by-product energy for the iron and steel industry and has been widely used for heating or electricity generation.However,the undesirable contaminants in BFG(especially H_(2)S)generate harmful environmental emissions.The desulfurization of BFG is urgent for integrated steel plants due to the stringent ultra-low emission standards.Compared with other desulfurization materials,zeolite-based adsorbents represent a viable option with low costs and long service life.In this study,an ammonia-induced CuO modified 13X adsorbent(NH_(3)–CuO/13X)was prepared for H_(2)S removal from simulated BFG at low temperature.The XRD,H_(2)-TPR and TEM analysis proved that smaller CuO particles were formed and the dispersion of Cu on the surface of 13X zeolite was improved via the induction of ammonia.Evaluation on H_(2)S adsorption performance of the adsorbent was carried out using simulated BFG,and the results showed that NH_(3)–CuO/13X-3 has better breakthrough sulfur capacity,which was more than twice the sulfur capacity of CuO/13X.It is proposed that the enhanced desulfurization performance of NH_(3)–CuO/13X is attributed to an abundant pore of 13X,and combined action of 13X and CuO.This work provided an effective way to improve the sulfur capacity of zeolite-based adsorbents via impregnation method by ammonia induction. 展开更多
关键词 blast furnace gas DESULFURIZATION Ammonia-induced CUO 13X zeolite
下载PDF
Rock fracture mechanism of buffer blasting with cushion layer at the borehole bottom
2
作者 Xinguang Zhu Chenxi Ding +2 位作者 Zhe Sui Hong Su Xu Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期325-334,共10页
This study primarily investigates the rock fracture mechanism of bottom cushion layer blasting and explores the effects of the bottom cushion layer on rock fragmentation.It involves analyses of the evolution patterns ... This study primarily investigates the rock fracture mechanism of bottom cushion layer blasting and explores the effects of the bottom cushion layer on rock fragmentation.It involves analyses of the evolution patterns of blasting stress,characteristics of crack distribution,and rock fracture features in the specimens.First,blasting model experiments were carried out using the dynamic caustics principle to investigate the influence of bottom cushion layers and initiation methods on the integrity of the bottom rock mass.The experimental results indicate that the combined use of bottom cushion layers and inverse initiation effectively protects the integrity of the bottom rock mass.Subsequently,the process of stress wave propagation and dynamic crack propagation in rocks was simulated using the continuum-discontinuum element method(CDEM)and the Landau explosion source model,with varying thicknesses of bottom cushion layers.The numerical simulation results indicate that with increasing cushion thickness,the absorption of energy generated by the explosion becomes more pronounced,resulting in fewer cracks in the bottom rock mass.This illustrates the positive role of the cushion layer in protecting the integrity of the bottom rock mass. 展开更多
关键词 bottom cushion layer blastING crack propagation continuum-discontinuum element method dynamic stress intensity factor
下载PDF
Blast waveform tailoring using controlled venting in blast simulators and shock tubes
3
作者 Edward Chern Jinn Gan Alex Remennikov David Ritzel 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期14-26,共13页
A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constra... A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied. 展开更多
关键词 Advanced blast simulator Shock wave propagation Far-field explosion blast loads blast waves Computational fluid dynamics
下载PDF
Research progress and future prospects in the service security of key blast furnace equipment
4
作者 Yanxiang Liu Kexin Jiao +3 位作者 Jianliang Zhang Cui Wang Lei Zhang Xiaoyue Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2121-2135,共15页
The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneve... The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions. 展开更多
关键词 blast furnace EQUIPMENT service security blast furnace campaign SELF-REPAIR
下载PDF
Development of an experimental method for well-controlled blast induced traumatic limb fracture in rats
5
作者 Luyang Xu Xiancheng Yu +4 位作者 Clement DFavier Ibidumo Igah Thuy-Tien Nguyen Warren Macdonald Anthony MJ.Bull 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期168-176,共9页
Heterotopic ossification(HO)is a consequence of traumatic bone and tissue damage,which occurs in 65%of military casualties with blast-associated amputations.However,the mechanisms behind blast-induced HO remain unclea... Heterotopic ossification(HO)is a consequence of traumatic bone and tissue damage,which occurs in 65%of military casualties with blast-associated amputations.However,the mechanisms behind blast-induced HO remain unclear.Animal models are used to study blast-induced HO,but developing such models is challenging,particularly in how to use a pure blast wave(primary blast)to induce limb fracture that then requires an amputation.Several studies,including our recent study,have developed platforms to induce limb fractures in rats with blast loading or a mixture of blast and impact loading.However,these models are limited by the survivability of the animal and repeatability of the model.In this study,we developed an improved platform,aiming to improve the animal's survivability and injury repeatability as well as focusing on primary blast only.The platform exposed only one limb of the rat to a blast wave while providing proper protection to the rest of the rat's body.We obtained very consistent fracture outcome in the tibia(location and pattern)in cadaveric rats with a large range of size and weight.Importantly,the rats did not obviously move during the test,where movement is a potential cause of uncontrolled injury.We further conducted parametric studies by varying the features of the design of the platform.These factors,such as how the limb is fixed and how the cavity through which the limb is placed is sealed,significantly affect the resulting injury.This platform and test setups enable well-controlled limb fracture induced directly by pure blast wave,which is the fundamental step towards a complete in vivo animal model for blast-induced HO induced by primary blast alone,excluding secondary and tertiary blast injury.In addition,the platform design and the findings presented here,particularly regarding the proper protection of the animal,have implications for future studies investigating localized blast injuries,such as blast induced brain and lung injuries. 展开更多
关键词 blast injury BIOMECHANICS Heterotopic ossification Limb fracture blast wave Animal model
下载PDF
Experimental and numerical analyses of the effect of fibre content on the close-in blast performance of a UHPFRC beam
6
作者 Junbo Yan Qiyue Zhang +4 位作者 Yan Liu Yingliang Xu Zhenqing Shi Fan Bai Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期242-261,共20页
Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge ga... Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were conducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diametersΦ12,Φ16,andΦ20,a reduction in maximum displacement by magnitudes of19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Nevertheless,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams. 展开更多
关键词 blast performance Close-in blast Fiber content Mesoscale approach UHPFRC beams
下载PDF
Adjustment mechanism of blasting dynamic-static action in the water decoupling charge
7
作者 Hao Zhang Xueyang Xing +3 位作者 Yiteng Du Tingchun Li Jianxin Yu Qingwen Zhu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期821-836,共16页
Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and qu... Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%. 展开更多
关键词 Water decoupling blasting blasting dynamic-static action Optimal decoupling coefficient Adjustment mechanism
下载PDF
Peak Particle Velocity Predicting Equation Associated with the Propagation of Vibrations Induced by Blasting in a Mine and Impacts on the Physical Degradation of Houses: The Case of the Yaramoko Mine, Bagassi, Burkina Faso
8
作者 Richard Zoundi Antoine Béré +1 位作者 Joel Martial Balkoulga Philibert Sawadogo 《Journal of Minerals and Materials Characterization and Engineering》 2024年第6期316-333,共18页
This study utilizes empirical equations to describe the propagation of vibrations induced by blasting, with the goal of predicting the attenuation of Peak Particle Velocity (PPV) at the Yaramoko mine in Bagassi, Burki... This study utilizes empirical equations to describe the propagation of vibrations induced by blasting, with the goal of predicting the attenuation of Peak Particle Velocity (PPV) at the Yaramoko mine in Bagassi, Burkina Faso, a site characterized by granitoid rock. Four empirical PPV prediction equations were employed, so-called Duvall & Fogelson (or the United States Bureau of Mines “USBM”), Langefors and Kihlstrom, Ambressys-Hendron, and the Bureau of Indian Standard. The constant parameters for each of these equations, referred to as site constants, were derived from linear regression curves. The results show that the site constants k, a, and b of 4762, 0.869, and 1.737, respectively, derived from the general prediction equation by Davies, PPV = kQaD−b, based on Duvall & Fogelson, are in good agreement with values of 4690, 0.9, and 1.69, respectively, for similar rock types in Spain. Regarding the impacts of blasting on houses, the findings indicate that houses built from laterite-block bricks in the village of Bagassi are the most vulnerable to vibration waves, followed by those constructed with cinder-block bricks. In contrast, houses made of banco bricks are the most resilient. Additionally, it was determined that during blasting operations, adjusting the blasting parameters to ensure the PPV does not exceed 2 mm/s at the level of nearby dwellings can minimize the appearance of cracks in houses. 展开更多
关键词 Peak Particle Velocity blastING Propagation of blasting Vibrations Cracks on Houses PPV Equation
下载PDF
Contour blasting parameters by using a tunnel blast design mode 被引量:9
9
作者 Nguyen Ngoc MINH CAO Ping LIU Zhi-zhen 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期100-111,共12页
The quality of contour blasting depends on many initial blasting parameters.The parameters including blasthole diameter,rock Protodyakonov coefficient,tunnel area and distance between cracks on the tunnel face are mor... The quality of contour blasting depends on many initial blasting parameters.The parameters including blasthole diameter,rock Protodyakonov coefficient,tunnel area and distance between cracks on the tunnel face are more important.In this study,an algorithm linking between Delphi programming language and AutoCAD was created to develop a tunnel blasting model.Using this model,tunnel contour blasting passport in AutoCAD can be obtained automatically.The effects of rock Protodyakonov coefficient and cracks’distance on blastholes number and specific charge with the variation of blasthole diameter and the semi-circular tunnel face area were investigated to yield a set of equations with the highest correlations.The results show that specific charge increases as rock Protodyakonov coefficient,cracks’distance and drillhole diameter increase,but decreases when tunnel face area increases.In addition,the number of drillholes increases linearly as tunnel face area increases but decreases when drillhole diameter increases. 展开更多
关键词 contour blasting blasting model blasting passport tunnel blasting
下载PDF
Effects of the initiation position on the damage and fracture characteristics of linear-charge blasting in rock 被引量:1
10
作者 Chenxi Ding Renshu Yang +3 位作者 Xiao Guo Zhe Sui Chenglong Xiao Liyun Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期443-451,共9页
To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and thre... To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition. 展开更多
关键词 blastING linear charge initiation position computed tomography three-dimensional reconstruction damage
下载PDF
The OsBSK1-2-MAPK module regulates blast resistance in rice 被引量:1
11
作者 Shengping Li Xinquan Xiang +5 位作者 Zhijuan Diao Na Xia Ling Lu Jing Zhang Zhiwei Chen Dingzhong Tang 《The Crop Journal》 SCIE CSCD 2024年第1期110-120,共11页
Receptor-like cytoplasmic kinase OsBSK1-2 was reported to play an important role in regulation of response to rice blast,but the signaling pathway remained unknown.In this study,we identified OsMAPKKK18 and previously... Receptor-like cytoplasmic kinase OsBSK1-2 was reported to play an important role in regulation of response to rice blast,but the signaling pathway remained unknown.In this study,we identified OsMAPKKK18 and previously uncharacterized MAPKKKs OsMAPKKK16 and OsMAPKKK19 that interact with OsBSK1-2.Expression of all three MAPKKKs was induced by Magnaporthe oryzae infection,and all three induced cell death when transiently expressed in Nicotiana benthamiana leaves.Knockout of OsMAPKKK16 and OsMAPKKK18 compromised blast resistance and overexpression of OsMAPKKK19 increased blast resistance,indicating that all three MAPKKKs are involved in regulation of rice blast response.Furthermore,both OsMAPKKK16 and OsMAPKKK19 interacted with and phosphorylated OsMKK4 and OsMKK5,and chitin-induced MAPK activation was suppressed in osmapkkk16 and osbsk1-2 mutants.OsMAPKKK18 was earlier reported to interact with and phosphorylate OsMKK4 and affect chitin-induced MAPK activation,suggesting that OsBSK1-2 is involved in regulation of immunity through multiple MAPK signaling pathways.Unlike BSK1 in Arabidopsis,OsBSK1-2 was not involved in response to avirulent M.oryzae strains.Taken together,our results revealed important roles of OsMAPKKK16/18/19 and a OsBSK1-2-OsMAPKKK16/18/19-OsMKK4/5 module in regulating response to rice blast. 展开更多
关键词 Disease resistance Magnaporthe oryzae Oriza sativa Rice blast
下载PDF
Transient response of doubly-curved bio-inspired composite shells resting on viscoelastic foundation subject to blast load using improved first-order shear theory and isogeometric approach 被引量:1
12
作者 Thuy Tran Thi Thu Tu Nguyen Anh +1 位作者 Hue Nguyen Thi Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期171-193,共23页
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties... Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures. 展开更多
关键词 blast load Modified first-order shear theory Biological composite structures
下载PDF
Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production:Physicochemical characteristics and gasification kinetics analysis 被引量:1
13
作者 Han Dang Runsheng Xu +2 位作者 Jianliang Zhang Mingyong Wang Jinhua Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期268-281,共14页
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con... The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion. 展开更多
关键词 blast furnace injection BIOMASS cross-upgrading hydrothermal carbonization PYROLYSIS physicochemical properties gasific-ation properties
下载PDF
Effect of Blasting Stress Wave on Dynamic Crack Propagation 被引量:1
14
作者 Huizhen Liu Duanying Wan +2 位作者 Meng Wang Zheming Zhu Liyun Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期349-368,共20页
Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical charact... Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice. 展开更多
关键词 Crack propagation blasting stress wave dynamic stress intensity factor pressure waveform numerical simulation
下载PDF
Global characterization of OsPIP aquaporins reveals that the H_(2)O_(2)transporter OsPIP2;6 increases resistance to rice blast 被引量:1
15
作者 Gousi Li Jingluan Han +6 位作者 Chen Yi Hao Luo Yuzhu Wang Fengpin Wang Xiaoyu Wang Letian Chen Yaling Zhang 《The Crop Journal》 SCIE CSCD 2024年第1期102-109,共8页
Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and a... Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and abiotic stress.To elucidate their roles in plant immunity to pathogen attack,we characterized the expression patterns,subcellular localizations,and H_(2)O_(2)-transport ability of 11 OsPIPs in rice(Oryza sativa),and identified OsPIP2;6 as necessary for rice disease resistance.OsPIP2;6 resides on the plasma membrane and facilitates cytoplasmic import of the immune signaling molecule H_(2)O_(2).Knockout of OsPIP2;6 increases rice susceptibility to Magnaporthe oryzae,indicating a positive function in plant immunity.OsPIP2;6 interacts with OsPIP2;2,which has been reported to increase rice resistance to pathogens via H_(2)O_(2)transport.Our findings suggest that OsPIP2;6 cooperates with OsPIP2;2 as a defense signal transporter complex during plant–pathogen interaction. 展开更多
关键词 AQUAPORIN Plant immunity Rice blast H_(2)O_(2)transport
下载PDF
Experimental and numerical study on protective effect of RC blast wall against air shock wave
16
作者 Xin-zhe Nian Quan-min Xie +2 位作者 Xin-li Kong Ying-kang Yao Kui Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期567-579,共13页
Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in diff... Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in different regions.The above experiments were numerically simulated,and the simulated shock wave overpressure waveforms were compared with that tested and given by CONWEP program.The results show that the numerically simulated waveform is slightly different from the test waveform,but similar to CONWEP waveform.Through dimensional analysis and numerical simulation under different working conditions,the equation for the attenuation rate of the diffraction overpressure behind the blast wall was obtained.According to the corresponding standards,the degree of casualties and the damage degree of the brick concrete building at a certain distance behind the wall can be determined when parameters are set.The above results can provide a reference for the design and construction of the reinforced concrete blast wall. 展开更多
关键词 blast wall Shock wave DIFFRACTION OVERPRESSURE Protection
下载PDF
Advanced Machine Learning Methods for Prediction of Blast-Induced Flyrock Using Hybrid SVR Methods
17
作者 Ji Zhou Yijun Lu +3 位作者 Qiong Tian Haichuan Liu Mahdi Hasanipanah Jiandong Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1595-1617,共23页
Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined wi... Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined with four algorithms:gravitational search algorithm(GSA),biogeography-based optimization(BBO),ant colony optimization(ACO),and whale optimization algorithm(WOA)for predicting flyrock in two surface mines in Iran.Additionally,three other methods,including artificial neural network(ANN),kernel extreme learning machine(KELM),and general regression neural network(GRNN),are employed,and their performances are compared to those of four hybrid SVR models.After modeling,the measured and predicted flyrock values are validated with some performance indices,such as root mean squared error(RMSE).The results revealed that the SVR-WOA model has the most optimal accuracy,with an RMSE of 7.218,while the RMSEs of the KELM,GRNN,SVR-GSA,ANN,SVR-BBO,and SVR-ACO models are 10.668,10.867,15.305,15.661,16.239,and 18.228,respectively.Therefore,combining WOA and SVR can be a valuable tool for accurately predicting flyrock distance in surface mines. 展开更多
关键词 Flyrock induced by blasting optimization algorithms SVR GRNN
下载PDF
Coke behavior with H_(2)O in a hydrogen-enriched blast furnace:A review
18
作者 Feng Zhou Daosheng Peng +5 位作者 Kejiang Li Alberto N.Conejo Haotian Liao Zixin Xiong Dongtao Li Jianliang Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期959-976,共18页
Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demand... Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demands on coke quality in a blast furnace.In a hydrogen-rich blast furnace,the presence of H_(2)O promotes the solution loss reaction.This result improves the reactivity of coke,which is 20%-30%higher in a pure H_(2)O atmosphere than in a pure CO_(2)atmosphere.The activation energy range is 110-300 kJ/mol between coke and CO_(2)and 80-170 kJ/mol between coke and H_(2)O.CO_(2)and H_(2)O are shown to have different effects on coke degradation mechanisms.This review provides a comprehensive overview of the effect of H_(2)O on the structure and properties of coke.By exploring the interactions between H_(2)O and coke,several unresolved issues in the field requiring further research were identified.This review aims to provide valuable insights into coke behavior in hydrogen-rich environments and promote the further development of hydrogen-rich blast furnace ironmaking processes. 展开更多
关键词 hydrogen ironmaking coke behavior blast furnace GASIFICATION microstructure kinetics
下载PDF
A Secure and Cost-Effective Training Framework Atop Serverless Computing for Object Detection in Blasting
19
作者 Tianming Zhang Zebin Chen +4 位作者 Haonan Guo Bojun Ren Quanmin Xie Mengke Tian Yong Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2139-2154,共16页
The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection ... The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection in the field of blasting.Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience,which has aroused people’s interest in how to use it in the field ofmachine learning.In this paper,we design a distributedmachine learning training application based on the AWS Lambda platform.Based on data parallelism,the data aggregation and training synchronization in Function as a Service(FaaS)are effectively realized.It also encrypts the data set,effectively reducing the risk of data leakage.We rent a cloud server and a Lambda,and then we conduct experiments to evaluate our applications.Our results indicate the effectiveness,rapidity,and economy of distributed training on FaaS. 展开更多
关键词 Serverless computing object detection blastING
下载PDF
Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators
20
作者 Quan Shi Jue Tang Mansheng Chu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1228-1240,共13页
The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,... The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits. 展开更多
关键词 blast furnace furnace heat genetic algorithm stacking prediction and feedback
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部