This paper first analyzes the characteristics and current situation of the Advanced Mathematics course;secondly,it proposes a teaching model that integrates the outcome-based education(OBE)philosophy and blended teach...This paper first analyzes the characteristics and current situation of the Advanced Mathematics course;secondly,it proposes a teaching model that integrates the outcome-based education(OBE)philosophy and blended teaching method,reorganizing the teaching objectives,teaching content,and assessment evaluation process of the Advanced Mathematics course;lastly,through practice,it is proved that this approach can effectively improve students’mastery of course content,enhance students’ability to apply mathematical knowledge,and strengthen teaching effectiveness.展开更多
X-ray diffraction line profiles of low density polyethylene(LDPE)/ (ethylene-propylene-octene-1)copolymer(EPO)blends have been analyzed with variance range function method.Theories for determining the microparacrystal...X-ray diffraction line profiles of low density polyethylene(LDPE)/ (ethylene-propylene-octene-1)copolymer(EPO)blends have been analyzed with variance range function method.Theories for determining the microparacrystallite size and the distortion parameter from single reflection have been described,and the value of these two parameters at (110)and(200)directions have been determined.展开更多
Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic...Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic crude oil is unfit for the production of highway paving asphalts directly, Neither are the de-oiled asphalts of the YVR. In this research a blending method and an optimal process of solvent de-asphalts are adopted to investigate the feasibility of formulating highway-paving asphalts from YVR. Results show that highway paving asphalts are formulated by blending solvent de-oiled asphalts with one or more of the materials including YVR, decanted oil from FCC process, and furfural extracts from lubricating base stocks. Further investigations indicate that adding oil decanted from FCC process to the solvent de-asphalting process can increase the de-asphalted oil production, improve the de-oiled asphalts quality, and thus optimize the refinery processes. The methodology of this research can be extended even to refineries processing non-paraffinic crude oils.展开更多
Completely weathered phyllite(CWP)soil is a kind of special soil with high swell potential,while red clay is a special soil with high shrinkage.This means that these two kinds of special soils are usually not suitable...Completely weathered phyllite(CWP)soil is a kind of special soil with high swell potential,while red clay is a special soil with high shrinkage.This means that these two kinds of special soils are usually not suitable for direct use as subgrade fill.To reduce the swell index of the CWP soil and the shrinkage of red clay at the same time,it was proposed to blend the CWP soil with red clay to improve their basic characteristics.A series of swell index tests and dry-wet cycle tests of the blended soils have been carried out at varying blending ratios,compaction coefficients and moisture contents.The test results show that the free swell index of the blended soil decreases with the increase of red clay,moisture content and compaction coefficient,respectively.The fissure density of the blended soil first decreases and then increases with the blending ratio,with the lowest being zero when the blending ratio is ranging from 20%to 40%.Through particle microscopic analysis and elemental composition analysis,it is found that the neutralization effect,the dilution effect of swell minerals,and the partition effect of coarse particles play an important role in restraining expansion and shrinkage deformation of the blended soil.Based on the liquid limit requirement of Chinese Railway Design Code(TB 10001-2016),the optimal blending ratio of red clay has been proposed to be 50%.Compared with the CWP soil,the free load swell index of the blended soil is reduced by 45.0%and the fissure density is reduced by 99.3%compared with that of red clay.Therefore,it is feasible to improve the CWP soil by blending it with red clay at an optimal ratio of 50%by using the neutralization effect of the expansion of CWP and shrinkage of red clay.展开更多
Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable p...Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.展开更多
Newton's polynomial interpolation may be the favourite linear interpolation in the sense that it is built up by means of the divided differences which can be calculated recursively and produce useful intermediate res...Newton's polynomial interpolation may be the favourite linear interpolation in the sense that it is built up by means of the divided differences which can be calculated recursively and produce useful intermediate results. However Newton interpolation is in fact point based interpolation since a new interpolating polynomial with one more degree is obtained by adding a new support point into the current set of support points once at a time. In this paper we extend the point based interpolation to the block based interpolation. Inspired by the idea of the modern architectural design, we first divide the original set of support points into some subsets (blocks), then construct each block by using whatever interpolation means, linear or rational and finally assemble these blocks by Newton's method to shape the whole interpolation scheme. Clearly our method offers many flexible interpolation schemes for choices which include the classical Newton's polynomial interpolation as its special case. A bivariate analogy is also discussed and numerical examples are given to show the effectiveness of our method.展开更多
The utilization of powdery semi-coke as a power fuel in pulverized coal-fired power plants has become a new and potential technique to consume the excess powdery semi-coke.The characteristic of low volatile results in...The utilization of powdery semi-coke as a power fuel in pulverized coal-fired power plants has become a new and potential technique to consume the excess powdery semi-coke.The characteristic of low volatile results in poor combustion performance and high NO_(x) emission,and to co-fire with bituminous coal is a practical strategy to address this problem.However,the co-combustion characteristics and the inherent interaction between semi-coke and coal remain insufficiently understood.In addition,the influences of secondary air arrangement,the boiler operation load,and the fuel type on co-combustion process are still unclear,which is urgent to be further explored.In the present study,experiments and numerical simulations were jointly utilized to inquire into the co-combustion behaviors and NO_(x) emission features of semi-coke and coal.The results demonstrated that the"out-furnace method"was a suitable choice for small-capacity boiler when the proportion of semi-coke was 33%,due to the limited combinations of the semi-coke injection position.It was recommended that semi-coke was preferred to be injected from the middle layers of the furnace under the"in-furnace method"to improve the overall co-combustion performance.The critical value of the separated over fire air ratio in this study was 27.5%,over which a slight drop of carbon content in fly ash could come about.Moreover,the elevation in the proportion of separated over fire air gave rise to the significant decline of NO_(x) concentration.The constricted secondary air arrangement was preferred to be employed due to the high boiler efficiency.The separated over fire air and the surrounding air needed to maintain a wide-open degree to prevent the increase of NO_(x) emissions and the coking of nozzles.For the load reduction regulation method adopted in this study,the NO_(x) concentration first rose and then dropped,while the burnout ratio decreased obviously as the operation load was reduced.Different combinations of coal and semi-coke generated significant influences on co-combustion behaviors within the furnace.The NO_(x )generated by high-volatile fuel (bituminous coal) combustion was mainly affected by volatile-N,while the NO_(x )generated by low-volatile fuel (semi-coke) was mainly impacted by char-N.This study is of guiding significance for the efficient and clean utilization and beneficial to the large-scale application of powder semi-coke in power plants.展开更多
文摘This paper first analyzes the characteristics and current situation of the Advanced Mathematics course;secondly,it proposes a teaching model that integrates the outcome-based education(OBE)philosophy and blended teaching method,reorganizing the teaching objectives,teaching content,and assessment evaluation process of the Advanced Mathematics course;lastly,through practice,it is proved that this approach can effectively improve students’mastery of course content,enhance students’ability to apply mathematical knowledge,and strengthen teaching effectiveness.
文摘X-ray diffraction line profiles of low density polyethylene(LDPE)/ (ethylene-propylene-octene-1)copolymer(EPO)blends have been analyzed with variance range function method.Theories for determining the microparacrystallite size and the distortion parameter from single reflection have been described,and the value of these two parameters at (110)and(200)directions have been determined.
文摘Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic crude oil is unfit for the production of highway paving asphalts directly, Neither are the de-oiled asphalts of the YVR. In this research a blending method and an optimal process of solvent de-asphalts are adopted to investigate the feasibility of formulating highway-paving asphalts from YVR. Results show that highway paving asphalts are formulated by blending solvent de-oiled asphalts with one or more of the materials including YVR, decanted oil from FCC process, and furfural extracts from lubricating base stocks. Further investigations indicate that adding oil decanted from FCC process to the solvent de-asphalting process can increase the de-asphalted oil production, improve the de-oiled asphalts quality, and thus optimize the refinery processes. The methodology of this research can be extended even to refineries processing non-paraffinic crude oils.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52068027,51668018,51768021).
文摘Completely weathered phyllite(CWP)soil is a kind of special soil with high swell potential,while red clay is a special soil with high shrinkage.This means that these two kinds of special soils are usually not suitable for direct use as subgrade fill.To reduce the swell index of the CWP soil and the shrinkage of red clay at the same time,it was proposed to blend the CWP soil with red clay to improve their basic characteristics.A series of swell index tests and dry-wet cycle tests of the blended soils have been carried out at varying blending ratios,compaction coefficients and moisture contents.The test results show that the free swell index of the blended soil decreases with the increase of red clay,moisture content and compaction coefficient,respectively.The fissure density of the blended soil first decreases and then increases with the blending ratio,with the lowest being zero when the blending ratio is ranging from 20%to 40%.Through particle microscopic analysis and elemental composition analysis,it is found that the neutralization effect,the dilution effect of swell minerals,and the partition effect of coarse particles play an important role in restraining expansion and shrinkage deformation of the blended soil.Based on the liquid limit requirement of Chinese Railway Design Code(TB 10001-2016),the optimal blending ratio of red clay has been proposed to be 50%.Compared with the CWP soil,the free load swell index of the blended soil is reduced by 45.0%and the fissure density is reduced by 99.3%compared with that of red clay.Therefore,it is feasible to improve the CWP soil by blending it with red clay at an optimal ratio of 50%by using the neutralization effect of the expansion of CWP and shrinkage of red clay.
文摘Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.
基金Project supported by the National Natural Science Foundation of China under Grant No.10171026 and No.60473114, and the Anhui Provincial Natural Science Foundation, China under Grant No.03046102.
文摘Newton's polynomial interpolation may be the favourite linear interpolation in the sense that it is built up by means of the divided differences which can be calculated recursively and produce useful intermediate results. However Newton interpolation is in fact point based interpolation since a new interpolating polynomial with one more degree is obtained by adding a new support point into the current set of support points once at a time. In this paper we extend the point based interpolation to the block based interpolation. Inspired by the idea of the modern architectural design, we first divide the original set of support points into some subsets (blocks), then construct each block by using whatever interpolation means, linear or rational and finally assemble these blocks by Newton's method to shape the whole interpolation scheme. Clearly our method offers many flexible interpolation schemes for choices which include the classical Newton's polynomial interpolation as its special case. A bivariate analogy is also discussed and numerical examples are given to show the effectiveness of our method.
基金financial support from the National Key R&D Program of China (2017YFB0602003)。
文摘The utilization of powdery semi-coke as a power fuel in pulverized coal-fired power plants has become a new and potential technique to consume the excess powdery semi-coke.The characteristic of low volatile results in poor combustion performance and high NO_(x) emission,and to co-fire with bituminous coal is a practical strategy to address this problem.However,the co-combustion characteristics and the inherent interaction between semi-coke and coal remain insufficiently understood.In addition,the influences of secondary air arrangement,the boiler operation load,and the fuel type on co-combustion process are still unclear,which is urgent to be further explored.In the present study,experiments and numerical simulations were jointly utilized to inquire into the co-combustion behaviors and NO_(x) emission features of semi-coke and coal.The results demonstrated that the"out-furnace method"was a suitable choice for small-capacity boiler when the proportion of semi-coke was 33%,due to the limited combinations of the semi-coke injection position.It was recommended that semi-coke was preferred to be injected from the middle layers of the furnace under the"in-furnace method"to improve the overall co-combustion performance.The critical value of the separated over fire air ratio in this study was 27.5%,over which a slight drop of carbon content in fly ash could come about.Moreover,the elevation in the proportion of separated over fire air gave rise to the significant decline of NO_(x) concentration.The constricted secondary air arrangement was preferred to be employed due to the high boiler efficiency.The separated over fire air and the surrounding air needed to maintain a wide-open degree to prevent the increase of NO_(x) emissions and the coking of nozzles.For the load reduction regulation method adopted in this study,the NO_(x) concentration first rose and then dropped,while the burnout ratio decreased obviously as the operation load was reduced.Different combinations of coal and semi-coke generated significant influences on co-combustion behaviors within the furnace.The NO_(x )generated by high-volatile fuel (bituminous coal) combustion was mainly affected by volatile-N,while the NO_(x )generated by low-volatile fuel (semi-coke) was mainly impacted by char-N.This study is of guiding significance for the efficient and clean utilization and beneficial to the large-scale application of powder semi-coke in power plants.