Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion...Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion based on correlation functions is proposed. It is proved that the signals can be separated, using only the condition of noncorrelation. An algorithm is derived, which only involves the solution to quadric nonlinear equations.展开更多
A novel method to extract multiple input and multiple output (MIMO) chaotic signals was proposed using the blind neural algorithm after transmitting in nonideal channel. The MIMO scheme with different chaotic signal g...A novel method to extract multiple input and multiple output (MIMO) chaotic signals was proposed using the blind neural algorithm after transmitting in nonideal channel. The MIMO scheme with different chaotic signal generators was presented. In order to separate the chaotic source signals only by using the sensor signals at receivers, a blind neural extraction algorithm based on higher-order statistic (HOS) technique was used to recover the primary chaotic signals. Simulation results show that the proposed approach has good performance in separating the primary chaotic signals even under nonideal channel.展开更多
This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) metho...This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.展开更多
There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME a...There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME and MMI algorithms, an Extended ME(EME) algorithm is proposed by using probability density function (pdf) estimation of the outputs to deduce the corresponding iterative formulas in BSS. Based on the simulation results, it can be concluded that the proposed algorithm has better performances than the traditional ME algorithm in convolute mixture BSS problems.展开更多
Without any prior information about related wireless transmitting nodes,joint estimation of the position and power of a blind signal combined with multiple co-frequency radio waves is a challenging task.Measuring the ...Without any prior information about related wireless transmitting nodes,joint estimation of the position and power of a blind signal combined with multiple co-frequency radio waves is a challenging task.Measuring the signal related data based on a group distributed sensor is an efficient way to infer the various characteristics of the signal sources.In this paper,we propose a particle swarm optimization to estimate multiple co-frequency"blind"source nodes,which is based on the received power data measured by the sensors.To distract the mix signals precisely,a genetic algorithm is applied,and it further improves the estimation performance of the system.The simulation results show the efficiency of the proposed algorithm.展开更多
A blind beamforming algorithm based on a neural network is presented according to the characteristic of cyclostationary signals. This method transforms the question of estimating beamformer weight vectors into the one...A blind beamforming algorithm based on a neural network is presented according to the characteristic of cyclostationary signals. This method transforms the question of estimating beamformer weight vectors into the one of computing the SVD of the cross correlation matrix of array input signals and their frequency shift signals. A cross correlation neural network is introduced to compute the SVD of the cross correlation matrix so as to reduce the computational complexity and carry out the blind beanfforming more efficiently. The improved cross-coupled Hebbian learning rule presented can make the weights of the neural network converge much fast. Therefore, it is more promising in the practical use. This method can restrain noise and interference, simulation proves its correctness.展开更多
This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) dire...This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.展开更多
针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别...针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。展开更多
文摘Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion based on correlation functions is proposed. It is proved that the signals can be separated, using only the condition of noncorrelation. An algorithm is derived, which only involves the solution to quadric nonlinear equations.
基金The Science and Technology Committee of Shanghai Municipality (No. 05DZ15004, 06DZ15013)The Project-sponsored by SRF for ROCS, SEM
文摘A novel method to extract multiple input and multiple output (MIMO) chaotic signals was proposed using the blind neural algorithm after transmitting in nonideal channel. The MIMO scheme with different chaotic signal generators was presented. In order to separate the chaotic source signals only by using the sensor signals at receivers, a blind neural extraction algorithm based on higher-order statistic (HOS) technique was used to recover the primary chaotic signals. Simulation results show that the proposed approach has good performance in separating the primary chaotic signals even under nonideal channel.
基金Supported by the National Natural Science Foundation of China (60801052)Aeronautical Science Foundation of China (2009ZC52036)
文摘This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.
文摘There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME and MMI algorithms, an Extended ME(EME) algorithm is proposed by using probability density function (pdf) estimation of the outputs to deduce the corresponding iterative formulas in BSS. Based on the simulation results, it can be concluded that the proposed algorithm has better performances than the traditional ME algorithm in convolute mixture BSS problems.
文摘Without any prior information about related wireless transmitting nodes,joint estimation of the position and power of a blind signal combined with multiple co-frequency radio waves is a challenging task.Measuring the signal related data based on a group distributed sensor is an efficient way to infer the various characteristics of the signal sources.In this paper,we propose a particle swarm optimization to estimate multiple co-frequency"blind"source nodes,which is based on the received power data measured by the sensors.To distract the mix signals precisely,a genetic algorithm is applied,and it further improves the estimation performance of the system.The simulation results show the efficiency of the proposed algorithm.
文摘A blind beamforming algorithm based on a neural network is presented according to the characteristic of cyclostationary signals. This method transforms the question of estimating beamformer weight vectors into the one of computing the SVD of the cross correlation matrix of array input signals and their frequency shift signals. A cross correlation neural network is introduced to compute the SVD of the cross correlation matrix so as to reduce the computational complexity and carry out the blind beanfforming more efficiently. The improved cross-coupled Hebbian learning rule presented can make the weights of the neural network converge much fast. Therefore, it is more promising in the practical use. This method can restrain noise and interference, simulation proves its correctness.
基金supported by the National Natural Science Foundation of China (10776040 60602057)+4 种基金Program for New Century Excellent Talents in University (NCET)the Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009CA2003)the Natural Science Foundation of Chongqing Science and Technology Commission (CSTC2009BB2287)the Natural Science Foundation of Chongqing Municipal Education Commission (KJ060509 KJ080517)
文摘This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.
文摘针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。