The analysis and the characterization of atrial fibrillation (AF) requires, in a previous key step, the extraction of the atrial activity (AA) free from 12-lead electrocardiogram (ECG). This contribution propose...The analysis and the characterization of atrial fibrillation (AF) requires, in a previous key step, the extraction of the atrial activity (AA) free from 12-lead electrocardiogram (ECG). This contribution proposes a novel non-invasive approach for the AA estimation in AF episodes. The method is based on blind source extraction (BSE) using high order statistics (HOS). The validity and performance of this algorithm are confirmed by extensive computer simulations and experiments on realworld data. In contrast to blind source separation (BSS) methods, BSE only extract one desired signal, and it is easy for the machine to judge whether the extracted signal is AA source by calculating its spectrum concentration, while it is hard for the machine using BSS method to judge which one of the separated twelve signals is AA source. Therefore, the proposed method is expected to have great potential in clinical monitoring.展开更多
In many applications, such as biomedical engineering, it is often required to extract a desired signal instead of all source signals. This can be achieved by blind source extraction (BSE) or semi-blind source extrac...In many applications, such as biomedical engineering, it is often required to extract a desired signal instead of all source signals. This can be achieved by blind source extraction (BSE) or semi-blind source extraction, which is a powerful technique emerging from the neural network field. In this paper, we propose an efficient semi-blind source extraction algorithm to extract a desired source signal as its first output signal by using a priori information about its kurtosis range. The algorithm is robust to outliers and spiky noise because of adopting a classical robust contrast function. And it is also robust to the estimation errors of the kurtosis range of the desired signal providing the estimation errors are not large. The algorithm has good extraction performance, even in some poor situations when the kurtosis values of some source signals are very close to each other. Its convergence stability and robustness are theoretically analyzed. Simulations and experiments on artificial generated data and real-world data have confirmed these results.展开更多
Blind source extraction (BSE) is widely used to solve signal mixture problems where there are only a few desired signals. To improve signal extraction performance and expand its application, we develop an adaptive B...Blind source extraction (BSE) is widely used to solve signal mixture problems where there are only a few desired signals. To improve signal extraction performance and expand its application, we develop an adaptive BSE algorithm with an additive noise model. We first present an improved normalized kurtosis as an objective function, which caters for the effect of noise. By combining the objective function and Lagrange multiplier method, we further propose a robust algorithm that can extract the desired signal as the first output signal. Simulations on both synthetic and real biomedical signals demonstrate that such combination improves the extrac- tion performance and has better robustness to the estimation error of normalized kurtosis value in the presence of noise.展开更多
基金the project of the Training Foundation of Sichuan Academic and Technical Leaders (Grant No. 901008)the project of application groundwork of Sichuan (Grant No.J13-075)the Training Plans of Young and Middle Elite of University of Electronic Science and Technology of China (Grant No.601016)
文摘The analysis and the characterization of atrial fibrillation (AF) requires, in a previous key step, the extraction of the atrial activity (AA) free from 12-lead electrocardiogram (ECG). This contribution proposes a novel non-invasive approach for the AA estimation in AF episodes. The method is based on blind source extraction (BSE) using high order statistics (HOS). The validity and performance of this algorithm are confirmed by extensive computer simulations and experiments on realworld data. In contrast to blind source separation (BSS) methods, BSE only extract one desired signal, and it is easy for the machine to judge whether the extracted signal is AA source by calculating its spectrum concentration, while it is hard for the machine using BSS method to judge which one of the separated twelve signals is AA source. Therefore, the proposed method is expected to have great potential in clinical monitoring.
基金Supported by the National Natural Science Foundation of China (Grant No. 60702072), and China Scholarship Council
文摘In many applications, such as biomedical engineering, it is often required to extract a desired signal instead of all source signals. This can be achieved by blind source extraction (BSE) or semi-blind source extraction, which is a powerful technique emerging from the neural network field. In this paper, we propose an efficient semi-blind source extraction algorithm to extract a desired source signal as its first output signal by using a priori information about its kurtosis range. The algorithm is robust to outliers and spiky noise because of adopting a classical robust contrast function. And it is also robust to the estimation errors of the kurtosis range of the desired signal providing the estimation errors are not large. The algorithm has good extraction performance, even in some poor situations when the kurtosis values of some source signals are very close to each other. Its convergence stability and robustness are theoretically analyzed. Simulations and experiments on artificial generated data and real-world data have confirmed these results.
文摘Blind source extraction (BSE) is widely used to solve signal mixture problems where there are only a few desired signals. To improve signal extraction performance and expand its application, we develop an adaptive BSE algorithm with an additive noise model. We first present an improved normalized kurtosis as an objective function, which caters for the effect of noise. By combining the objective function and Lagrange multiplier method, we further propose a robust algorithm that can extract the desired signal as the first output signal. Simulations on both synthetic and real biomedical signals demonstrate that such combination improves the extrac- tion performance and has better robustness to the estimation error of normalized kurtosis value in the presence of noise.