We extend the exciton population equations of a two-level quantum dot system with weak excitation to the ones with strong excitations, in which, the phonon-induced intensity-dependent dephasing time and decay rate are...We extend the exciton population equations of a two-level quantum dot system with weak excitation to the ones with strong excitations, in which, the phonon-induced intensity-dependent dephasing time and decay rate are involved. The straightforward calculated populations from the modified population equations demonstrate the damping behavior of Rabi oscillation as the external field increasing. The effect of the intensity-dependent dephasing time and the intensity-dependent decay rate are also discussed.展开更多
In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality ...In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented to not only guarantee the asymptotic synchronization but also achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation study is presented to demonstrate the effectiveness of the proposed synchronization scheme.展开更多
In this paper, considering the Hirota and the Maxwell–Bloch (H-MB) equations which are governed by femtosecond pulse propagation through a two-level doped fiber system, we construct the Darboux transformation of th...In this paper, considering the Hirota and the Maxwell–Bloch (H-MB) equations which are governed by femtosecond pulse propagation through a two-level doped fiber system, we construct the Darboux transformation of this system through a linear eigenvalue problem. Using this Daurboux transformation, we generate multi-soliton, positon, and breather solutions (both bright and dark breathers) of the H-MB equations. Finally, we also construct the rogue wave solutions of the above system.展开更多
A novel nuclear magnetic resonance (NMR) experimental scheme, called wideband continuous wave NMR (WB-CW-NMR), is presented in this article. This experimental scheme has promising applications in pulsed magnetic f...A novel nuclear magnetic resonance (NMR) experimental scheme, called wideband continuous wave NMR (WB-CW-NMR), is presented in this article. This experimental scheme has promising applications in pulsed magnetic fields, and can dramatically improve the utilization of the pulsed field. The feasibility of WB-CW-NMR scheme is verified by numerically solving modified Bloeh equations. In the numerical simulation, the applied magnetic field is a pulsed magnetic field up to 80 T, and the wideband continuous radio frequency (RF) excitation is a band-limited (0.68-3.40 GHz) white noise. ~lrthermore, the influences of some experimental parameters, such as relaxation time, applied magnetic field strength and wideband continuous RF power, on the WB-CW-NMR signal are analyzed briefly. Finally, a multi-channel system framework for transmitting and receiving ultra wideband signals is proposed, and the basic requirements of this experimental system are discussed. Meanwhile, the amplitude of the NMR signal, the level of noise and RF interference in WB-CW-NMR experiments are estimated, and a preliminary adaptive cancellation plan is given for detecting WB-CW-NMR signal from large background interference.展开更多
By numerically solving the semiconductor Bloch equation(SBEs),we theoretically study the high-harmonic generation of ZnO crystals driven by one-color and two-color intense laser pulses.The results show the enhancement...By numerically solving the semiconductor Bloch equation(SBEs),we theoretically study the high-harmonic generation of ZnO crystals driven by one-color and two-color intense laser pulses.The results show the enhancement of harmonics and the cut-off remains the same in the two-color field,which can be explained by the recollision trajectories and electron excitation from multi-channels.Based on the quantum path analysis,we investigate contribution of different ranges of the crystal momentum k of ZnO to the harmonic yield,and find that in two-color laser fields,the intensity of the harmonic yield of different ranges from the crystal momentum makes a big difference and the harmonic intensity is depressed from all k channels,which is related to the interferences between harmonics from symmetric k channels.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
This paper demonstrates rigorous chaotic dynamics in nonlinear Bloch system by virtue of topological horseshoe and numerical method. It considers a properly chosen cross section and the corresponding Poincare map, and...This paper demonstrates rigorous chaotic dynamics in nonlinear Bloch system by virtue of topological horseshoe and numerical method. It considers a properly chosen cross section and the corresponding Poincare map, and shows the existence of horseshoe in the Poincare map. In this way, a rigorous verification of chaos in the nonlinear Bloch system is presented.展开更多
The high-order harmonic generation from a model solid structure driven by an intense laser pulse is investigated using the semiconductor Bloch equations(SBEs). The main features of harmonic spectrum from SBEs agree we...The high-order harmonic generation from a model solid structure driven by an intense laser pulse is investigated using the semiconductor Bloch equations(SBEs). The main features of harmonic spectrum from SBEs agree well with the result of the time-dependent Schro¨dinger equation(TDSE), and the cut-off energy can be precisely estimated by the recollision model. With increasing the field strength, the harmonic spectrum shows an extra plateau. Based on the temporal population of electron and the time–frequency analysis, the harmonics in the extra plateau are generated by the Bloch oscillation. Due to the ultrafast time response of the Bloch electron, the generated harmonics provide a potential source of shorter isolated attosecond pulse.展开更多
This paper tries to build a multi-functional downhole nuclear magnetic resonance (NMR) fluid analysis laboratory that can evaluate fluid information in real time at reservoir conditions at a depth of several thousan...This paper tries to build a multi-functional downhole nuclear magnetic resonance (NMR) fluid analysis laboratory that can evaluate fluid information in real time at reservoir conditions at a depth of several thousand meters. The aim is to monitor the pollution of the formation fluids and quantitatively evaluate NMR characteristics of the fluids. It focuses on the design of the structure and parameters of a sensor with zero stray fields. Two separate coils are designed to measure NMR characteristics of flowing or static fluids. A method is proposed to use the Bloch equation, to guide the optimization of the NMR sensor. Finally, the measured results confirm that the design is reasonable. There is a homogeneous static field (perpendicular to the axial direction) in the center of the sensor, and there are no stray external fields. The novel design of pre-polarization magnet improves the signal to noise ratio, while shortening the sensor length.展开更多
The general expressions of the average dissipative and dipole forces acting on a A-configuration three-level atom in an arbitrary light field are derived by means of the optical Bloch equations based on the atomic den...The general expressions of the average dissipative and dipole forces acting on a A-configuration three-level atom in an arbitrary light field are derived by means of the optical Bloch equations based on the atomic density matrix elements, and the general properties of the average dissipative and dipole forces on a three-level atom in the linearly-polarized high-order Bessel beams (HBBs) are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Meanwhile we find a saturation effect of the average dissipative force in the HBB, which comes from the saturation of the upper-level population. Our study shows that the general expressions of the average dissipative and dipole forces on the three-level atom will be simplified to those of the two-level atom under the approximation of large detuning. Finally, we study the axial and azimuthal Doppler cooling of atoms in ID optical molasses composed of two counter-propagating HBBs and discuss the azimuthal influence of the HBB on the Doppler cooling limit. We also find that the Doppler limit of atoms in the molasses HBB is slightly below the conventional Doppler limit of hГ/(2kB) due to the orbital angular momentum lh of the HBB.展开更多
This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving n...This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving numerically the full-wave Maxwell-Bloch equations beyond slowly-varying envelope approximation and rotating-wave approximation. The effect of the LFC is considerably obvious when pulses with large areas propagate in the dense molecular medium. In the case of resonance, the group velocity of the sub-pulses split from the incident pulse along propagation is severely decreased by the LFC, especially for the latest sub-pulse. However, in the case of nonresonance, the influence of the LFC on the temporal evolution of the pulse is less obvious and lacks homogeneity with an increase in incident pulse area, propagation distance and molecular density.展开更多
This paper investigates the atomic spin polarization controllability of spin-exchange relaxation-free co-magnetometers(SERFCMs).This is the first work in the field of controllability analysis for the atomic spin ensem...This paper investigates the atomic spin polarization controllability of spin-exchange relaxation-free co-magnetometers(SERFCMs).This is the first work in the field of controllability analysis for the atomic spin ensembles systems,whose dynamic behaviors of spin polarization are described by the Bloch equations.Based on the Bloch equations,a state-space model of the atomic spin polarization for SERFCM is first established,which belongs to a particular class of nonlinear systems.For this class of nonlinear systems,a novel determination method for the global state controllability is proposed and proved.Then,this method is implemented in the process of controllability analysis on the atomic spin polarization of an actual SERFCM.Moreover,a theoretically feasible and reasonable solution of the control input is proposed under some physical constraints,with whose limitation of realistic conditions,the controller design can be accomplished more practically and more exactly.Finally,the simulation results demonstrate the feasibility and validation of the proposed controllability determination method.展开更多
We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation(AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which expo...We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation(AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-iondoped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo's intensity and efficiency. The theoretical analysis is validated by numerical simulations.展开更多
In this paper, we present splitting schemes for the two-level Bloch model. After proposing two ways to split the Bloch equation, we show that it is possible in each case togenerate exact numerical solutions of the obt...In this paper, we present splitting schemes for the two-level Bloch model. After proposing two ways to split the Bloch equation, we show that it is possible in each case togenerate exact numerical solutions of the obtained sub-equations. These exact solutionsinvolve matrix exponentials which can be expensive to compute. Here, for 2×2 matriceswe develop equivalent formulations which reduce the computational cost. These splittingschemes are nonstandard ones and conserve all the physical properties (Hermicity, positiveness and trace) of Bloch equations. In addition, they are explicit, making effectivetheir implementation when coupled with the Maxwell’s equations.展开更多
The c-number atomic Bloch equations modelling the coupling of a 2-photon 2-1evel single atom with a non-resonant (A # O) squeezed vacuum (SV) radiation reservoir show that: (i) The quantum interference (QI) p...The c-number atomic Bloch equations modelling the coupling of a 2-photon 2-1evel single atom with a non-resonant (A # O) squeezed vacuum (SV) radiation reservoir show that: (i) The quantum interference (QI) process, of parameter f O, between the 2-photon transition channels causes coupling of the atomic variables (inversion and polarisation), and, (ii) The SV reservoir parameters (N, M) induce periodic coefficients and hence inhibited oscillatory behaviour in the atomic variables. Perturbative analytical solutions of these non-autonomous B1och equations are derived and used to calculate the absorption spectrum of a weak field probing the system. Of particular, the zero-absorption isolines in the relevant (N, f)- and (A, f )-planes of the the largest set of points, where absorption is zero, in parameter (M) of the SV reservoir. system parameters are identified computationally. It is found that, the (A, f)-plane depends on the choice of the degree of squeezing展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10534030 and 10474075
文摘We extend the exciton population equations of a two-level quantum dot system with weak excitation to the ones with strong excitations, in which, the phonon-induced intensity-dependent dephasing time and decay rate are involved. The straightforward calculated populations from the modified population equations demonstrate the damping behavior of Rabi oscillation as the external field increasing. The effect of the intensity-dependent dephasing time and the intensity-dependent decay rate are also discussed.
文摘In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented to not only guarantee the asymptotic synchronization but also achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation study is presented to demonstrate the effectiveness of the proposed synchronization scheme.
基金Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant No. LY12A01007)the National Natural Science Foundation of China (Grant Nos. 11201251, 10971109, and 11271210)+1 种基金K. C. Wong Magna Fund in Ningbo Universitythe DST,DAE-BRNS, UGC, and CSIR, Government of India, for the financial support through major projects
文摘In this paper, considering the Hirota and the Maxwell–Bloch (H-MB) equations which are governed by femtosecond pulse propagation through a two-level doped fiber system, we construct the Darboux transformation of this system through a linear eigenvalue problem. Using this Daurboux transformation, we generate multi-soliton, positon, and breather solutions (both bright and dark breathers) of the H-MB equations. Finally, we also construct the rogue wave solutions of the above system.
基金Supported by National Natural Science Foundation of China(11475067)the Innovative Research Foundation of Huazhong University of Science and Technology(2015 ZDTD017)the Experimental Apparatus Research Project of Wuhan Pulsed High Magnetic Field Center(2015KF17)
文摘A novel nuclear magnetic resonance (NMR) experimental scheme, called wideband continuous wave NMR (WB-CW-NMR), is presented in this article. This experimental scheme has promising applications in pulsed magnetic fields, and can dramatically improve the utilization of the pulsed field. The feasibility of WB-CW-NMR scheme is verified by numerically solving modified Bloeh equations. In the numerical simulation, the applied magnetic field is a pulsed magnetic field up to 80 T, and the wideband continuous radio frequency (RF) excitation is a band-limited (0.68-3.40 GHz) white noise. ~lrthermore, the influences of some experimental parameters, such as relaxation time, applied magnetic field strength and wideband continuous RF power, on the WB-CW-NMR signal are analyzed briefly. Finally, a multi-channel system framework for transmitting and receiving ultra wideband signals is proposed, and the basic requirements of this experimental system are discussed. Meanwhile, the amplitude of the NMR signal, the level of noise and RF interference in WB-CW-NMR experiments are estimated, and a preliminary adaptive cancellation plan is given for detecting WB-CW-NMR signal from large background interference.
基金the National Natural ScienceFoundation of China (Grant No. 12074146)the NaturalScience Foundation of Jilin Province, China (GrantNo. 20220101010JC).
文摘By numerically solving the semiconductor Bloch equation(SBEs),we theoretically study the high-harmonic generation of ZnO crystals driven by one-color and two-color intense laser pulses.The results show the enhancement of harmonics and the cut-off remains the same in the two-color field,which can be explained by the recollision trajectories and electron excitation from multi-channels.Based on the quantum path analysis,we investigate contribution of different ranges of the crystal momentum k of ZnO to the harmonic yield,and find that in two-color laser fields,the intensity of the harmonic yield of different ranges from the crystal momentum makes a big difference and the harmonic intensity is depressed from all k channels,which is related to the interferences between harmonics from symmetric k channels.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010-1a-036)
文摘This paper demonstrates rigorous chaotic dynamics in nonlinear Bloch system by virtue of topological horseshoe and numerical method. It considers a properly chosen cross section and the corresponding Poincare map, and shows the existence of horseshoe in the Poincare map. In this way, a rigorous verification of chaos in the nonlinear Bloch system is presented.
基金Project supported by the NSAF,China(Grant No.U1730449)the National Natural Science Foundation of China(Grant Nos.11904341,11774322,91850201,and 11874066)
文摘The high-order harmonic generation from a model solid structure driven by an intense laser pulse is investigated using the semiconductor Bloch equations(SBEs). The main features of harmonic spectrum from SBEs agree well with the result of the time-dependent Schro¨dinger equation(TDSE), and the cut-off energy can be precisely estimated by the recollision model. With increasing the field strength, the harmonic spectrum shows an extra plateau. Based on the temporal population of electron and the time–frequency analysis, the harmonics in the extra plateau are generated by the Bloch oscillation. Due to the ultrafast time response of the Bloch electron, the generated harmonics provide a potential source of shorter isolated attosecond pulse.
基金Financial support from the National Science Foundation of China (Grant No. 41074102)the China International Science and Technology Cooperation (Grant No.2009DFA61030)
文摘This paper tries to build a multi-functional downhole nuclear magnetic resonance (NMR) fluid analysis laboratory that can evaluate fluid information in real time at reservoir conditions at a depth of several thousand meters. The aim is to monitor the pollution of the formation fluids and quantitatively evaluate NMR characteristics of the fluids. It focuses on the design of the structure and parameters of a sensor with zero stray fields. Two separate coils are designed to measure NMR characteristics of flowing or static fluids. A method is proposed to use the Bloch equation, to guide the optimization of the NMR sensor. Finally, the measured results confirm that the design is reasonable. There is a homogeneous static field (perpendicular to the axial direction) in the center of the sensor, and there are no stray external fields. The novel design of pre-polarization magnet improves the signal to noise ratio, while shortening the sensor length.
基金supported by the National Natural Science Foundation of China (Grant Nos 10434060 and 10674047)the Natural Science Foundation of the Jiangsu Higher Institutions of China (Grant No 06KJB510020)the Natural Science Foundation of Jiangsu University of China (Grant No 07JDG027)
文摘The general expressions of the average dissipative and dipole forces acting on a A-configuration three-level atom in an arbitrary light field are derived by means of the optical Bloch equations based on the atomic density matrix elements, and the general properties of the average dissipative and dipole forces on a three-level atom in the linearly-polarized high-order Bessel beams (HBBs) are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Meanwhile we find a saturation effect of the average dissipative force in the HBB, which comes from the saturation of the upper-level population. Our study shows that the general expressions of the average dissipative and dipole forces on the three-level atom will be simplified to those of the two-level atom under the approximation of large detuning. Finally, we study the axial and azimuthal Doppler cooling of atoms in ID optical molasses composed of two counter-propagating HBBs and discuss the azimuthal influence of the HBB on the Doppler cooling limit. We also find that the Doppler limit of atoms in the molasses HBB is slightly below the conventional Doppler limit of hГ/(2kB) due to the orbital angular momentum lh of the HBB.
基金supported by the National Natural Science Foundation of China (Grant No. 10974121)the National Basic Research Program of China (Grant No. 2006CB806000)the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)
文摘This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving numerically the full-wave Maxwell-Bloch equations beyond slowly-varying envelope approximation and rotating-wave approximation. The effect of the LFC is considerably obvious when pulses with large areas propagate in the dense molecular medium. In the case of resonance, the group velocity of the sub-pulses split from the incident pulse along propagation is severely decreased by the LFC, especially for the latest sub-pulse. However, in the case of nonresonance, the influence of the LFC on the temporal evolution of the pulse is less obvious and lacks homogeneity with an increase in incident pulse area, propagation distance and molecular density.
基金supported in part by the National Natural Science Foundation of China(61673041,62003022)the Beijing Academy of Quantum Information Science Research Program(Y18G34)。
文摘This paper investigates the atomic spin polarization controllability of spin-exchange relaxation-free co-magnetometers(SERFCMs).This is the first work in the field of controllability analysis for the atomic spin ensembles systems,whose dynamic behaviors of spin polarization are described by the Bloch equations.Based on the Bloch equations,a state-space model of the atomic spin polarization for SERFCM is first established,which belongs to a particular class of nonlinear systems.For this class of nonlinear systems,a novel determination method for the global state controllability is proposed and proved.Then,this method is implemented in the process of controllability analysis on the atomic spin polarization of an actual SERFCM.Moreover,a theoretically feasible and reasonable solution of the control input is proposed under some physical constraints,with whose limitation of realistic conditions,the controller design can be accomplished more practically and more exactly.Finally,the simulation results demonstrate the feasibility and validation of the proposed controllability determination method.
基金Project supported by Special Funds for Scientific and Technological Innovation Projects in Tianjin,China(Grant No.10FDZDGX00400)the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.15JCQNJC01100)
文摘We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation(AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-iondoped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo's intensity and efficiency. The theoretical analysis is validated by numerical simulations.
文摘In this paper, we present splitting schemes for the two-level Bloch model. After proposing two ways to split the Bloch equation, we show that it is possible in each case togenerate exact numerical solutions of the obtained sub-equations. These exact solutionsinvolve matrix exponentials which can be expensive to compute. Here, for 2×2 matriceswe develop equivalent formulations which reduce the computational cost. These splittingschemes are nonstandard ones and conserve all the physical properties (Hermicity, positiveness and trace) of Bloch equations. In addition, they are explicit, making effectivetheir implementation when coupled with the Maxwell’s equations.
文摘The c-number atomic Bloch equations modelling the coupling of a 2-photon 2-1evel single atom with a non-resonant (A # O) squeezed vacuum (SV) radiation reservoir show that: (i) The quantum interference (QI) process, of parameter f O, between the 2-photon transition channels causes coupling of the atomic variables (inversion and polarisation), and, (ii) The SV reservoir parameters (N, M) induce periodic coefficients and hence inhibited oscillatory behaviour in the atomic variables. Perturbative analytical solutions of these non-autonomous B1och equations are derived and used to calculate the absorption spectrum of a weak field probing the system. Of particular, the zero-absorption isolines in the relevant (N, f)- and (A, f )-planes of the the largest set of points, where absorption is zero, in parameter (M) of the SV reservoir. system parameters are identified computationally. It is found that, the (A, f)-plane depends on the choice of the degree of squeezing