Identifying distinct tectonic units is key to understanding the geotectonic framework and distribution law of oil and gas resources.The South China Sea and its adjacent areas have undergone complex tectonic evolution ...Identifying distinct tectonic units is key to understanding the geotectonic framework and distribution law of oil and gas resources.The South China Sea and its adjacent areas have undergone complex tectonic evolution processes,and the division of tectonic units is controversial.Guided by block tectonics theory,this study divide the South China Sea and its adjacent areas into several distinguished tectonic units relying on known boundary markers such as sutures(ophiolite belts),subduction-collision zones,orogenic belts,and deep faults.This work suggests that the study area is occupied by nine stable blocks(West Burma Block,Sibumasu Block,LanpingSimao Block,Indochina Block,Yangtze Block,Cathaysian Block,Qiongnan Block,Nansha Block,and Northwest Sulu Block),two suture zones(Majiang suture zone and Southeast Yangtze suture zone),two accretionary zones(Sarawak-Sulu accretionary zone and East Sulawesi accretionary zone),one subduction-collision zone(RakhineJava-Timor subduction-collision zone),one ramp zone(Philippine islands ramp zone),and six small oceanic marginal sea basins(South China Sea Basin,Sulu Sea Basin,Sulawesi Sea Basin,Banda Sea Basin,Makassar Basin,and Andaman Sea Basin).This division reflects the tectonic activities,crustal structural properties,and evolutionary records of each evaluated tectonic unit.It is of great theoretical and practical importance to understand the tectonic framework to support the exploration of oil and gas resources in the South China Sea and its adjacent areas.展开更多
In the paper, the kinematic model of tectonic blocks in southwest China is studied based on the precision GPS observations carried out under the major subject of 'Studies on Current Crustal Movement and Geodynamic...In the paper, the kinematic model of tectonic blocks in southwest China is studied based on the precision GPS observations carried out under the major subject of 'Studies on Current Crustal Movement and Geodynamics' which belongs to the State Climbing Project. It is believed that at present, the data of high precision GPS observation may provide convincing information related to the horizontal movement of tectonic blocks in the Chinese mainland. The preliminary results obtained from the kinematic model have given some direct evidences for the research of dynamic mechanism of crustal deformation in the Chinese mainland and on the basis of which, the kinematic characteristics and their relations to the seismicity and seismic risk in the reobserved region are analysed. The preliminary observation results are encouraging.展开更多
Based on the hypothesis of the active tectonic blocks on the Chinese continent and its adjacent regions (both the method of the DDA on a spherical surface and the GPS survey results observed from 1991 to 2001 are used...Based on the hypothesis of the active tectonic blocks on the Chinese continent and its adjacent regions (both the method of the DDA on a spherical surface and the GPS survey results observed from 1991 to 2001 are used), the movements and deformations of each active tectonic block are calculated. The calculation results show that although the movements and deformations of active tectonic blocks in the eastern region and in the western region of China are different, active tectonic blocks in the same active tectonic block region are coherent. Then, the relative velocities of the active tectonic blocks’ boundary zones are calculated, and the relationship between current crustal motion and strong seismic activities is discussed. Earthquakes ( M S≥7 0) on the Chinese continent since 1988 all occurred on boundary zones of active tectonic blocks with high slipping speed.展开更多
In this paper, the typical velocity structures and average velocities of the crust in six different active tectonic block regions are presented on the basis of previous studies and their tectonic implications are disc...In this paper, the typical velocity structures and average velocities of the crust in six different active tectonic block regions are presented on the basis of previous studies and their tectonic implications are discussed. The results show that different tectonic units have different features of crustal velocity structures. In general, there are low velocity distributions in the crust in regions with strong tectonic activities, and the scales of low velocity distributions are related to the tectonic activities. The average velocities are relatively low in such regions. This reflects strong crustal deformation and the variations of states of matter in the crust resulting from strong tectonic movements. These regions are also seismically active zones frequented by strong earthquakes. Therefore, studying crustal velocity structures of these regions is of great importance to understanding crustal geodynamic process and seismogenic tectonic background.展开更多
Objective The lateral extrusion of southeastern edge of the crustal materials around the Tibetan Plateau since the Oligocene is believed to be one of the main inducements of-1300 km latitudinal crustal convergence in...Objective The lateral extrusion of southeastern edge of the crustal materials around the Tibetan Plateau since the Oligocene is believed to be one of the main inducements of-1300 km latitudinal crustal convergence in the Tibetan Plateau, since the collision of India and Eurasia in the Paleogene. Two end-member models were used to describe the process of lateral extrusion of crustal material on the southeastern edge of the Tibetan Plateau. The "tectonic escape" model suggests the Indochina Block, Chuandian Fragment and Shan-Thai Block have experienced lateral extrusion along strike-slip fault systems, and the "crustal flow" model suggests that the upper crust has undergone southeastward escape in the form of ductile deformation, driven by viscous lower crustal flow channels. In addition, the GPS observations surrounding the Tibetan Plateau indicate that crustal materials currently experience clockwise rotation around the Eastern Himalaya syntaxis. This work conducted paleomagnetic studies in the Cretaceous and Paleogene red-beds along the southeastern margin of Tibetan Plateau,展开更多
1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial p...1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial potash展开更多
The long-term earthquake prediction from 2021 to 2030 is carried out by researching the active tectonic block boundary zones in the Chinese mainland.Based on the strong earthquake recurrence model,the cumulative proba...The long-term earthquake prediction from 2021 to 2030 is carried out by researching the active tectonic block boundary zones in the Chinese mainland.Based on the strong earthquake recurrence model,the cumulative probability of each target fault in the next 10 years is given by the recurrence period and elapsed time of each fault,which are adopted from relevant studies such as seismological geology,geodesy,and historical earthquake records.Based on the long-term predictions of large earthquakes throughout the world,this paper proposes a comprehensive judgment scheme based on the fault segments with the seismic gap,motion strongly locked,sparse small-moderate earthquakes,and apparent Coulomb stress increase.This paper presents a comprehensive analysis of the relative risk for strong earthquakes that may occur in the coming 10 years on the major faults in the active tectonic block boundary zones in the Chinese mainland.The present loading rate of each fault is first constrained by geodetic observations;the cumulative displacement of each fault is then estimated by the elapsed time since the most recent strong earthquake.展开更多
The ca. 126e120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as>3000 t Au. The vein and disseminated ores are hosted by N...The ca. 126e120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as>3000 t Au. The vein and disseminated ores are hosted by NE-to NNE-trending brittle normal faults that parallel the margins of ca. 165e150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Pre-cambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous "Yan-shanian"intracontinental extensional deformation and associated gold formation. 〈br〉 Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong de-posits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolati-lization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130e123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineral-ization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate subduction, and seismicity along the continental-scale Tan-Lu fault. Possible ore genesis scenarios include those where ore fluids were produced directly by the metamorphism of oceanic lithosphere and overlying sediment on the subducting paleo-Pacific slab, or by devolatilization of an enriched mantle wedge above the slab. Both the sulfur and gold could be sourced from either the oceanic sediments or the serpentinized mantle. A better understanding of the architecture of the paleo-Pacific slab during Early Cretaceous below the eastern margin of China is essential to determination of the validity of possible models.展开更多
Geological anomaly is a geological body or geological body combination different from its surroundings in composition, structure, or genetic sequence. If there is a value (value interval ) that works as a valve repres...Geological anomaly is a geological body or geological body combination different from its surroundings in composition, structure, or genetic sequence. If there is a value (value interval ) that works as a valve representing the background field, exceeding or lower than the valve value,it is called a geological anomaly. Geological anomalies can be divided into high geological anomaly and low geological anomaly .The former shows the area that is more complex in composition, Structure or genetic sequence than its surroundings; while the latter just gives an opposite indication, i. e. much simpler. According to their distribution and delimitation markers, geological anomalies can be classified into (1)global geological anomaly; (2)regional geological anomaly; (3) local geological anomaly; (4) minor geological anomaly and (5)micro-geological anomaly .The methods for delimiting geological anomalies include (1)crustal elevation-subsidence coefficieat (G value ) determination; (2) geological complex coefficient (C value ) determination; (3) entropy (H value ) determination; (4) geological similarity coefficient (S value ) determination and (5 ) geological correlation coefficient (R value ) determination. As the result of the movements of Eurasian, Pacific and Indian Plates, the Chinese geological anomalies, including 11 regional ones and 32 main local ones, most Paleozoic in age, are distributed in strip on the margin or the outer and inner folded zones in the east and west arcs of the block symmetric arc tectonic system (BSATS), which controls the distribution of various minerals in China. Thus, geological anomaly theory is of great significance in searching for large, super-large and very large ore deposits.展开更多
According to the results of careful re-proeessing of data obtained from two GPS survey campaigns of crustal movement monitoring network in Chinese mainland carried out in 1994 and 1996, the crustal horizontal movement...According to the results of careful re-proeessing of data obtained from two GPS survey campaigns of crustal movement monitoring network in Chinese mainland carried out in 1994 and 1996, the crustal horizontal movement characteristics in Chinesc mainland are studied in the paper.In the analysis, a relatively consummate deformation model in which the deformation is described by the relative movement between the tectonic blocks with interior strain and the corresponding analysis method are used. The magnitude of movement along the boundary zones between the tectonic blocks is calculated. And the characters and intensities between the main boundny zones are compared.展开更多
The lithospheric magnetic field (LMF) in China and its surrounding are calculated using the spherical har- monic coefficients given by the NGDC-720 model. The LMF comes from the magnetization of minerals in the crus...The lithospheric magnetic field (LMF) in China and its surrounding are calculated using the spherical har- monic coefficients given by the NGDC-720 model. The LMF comes from the magnetization of minerals in the crust and in the uppermost mantle. It may, therefore, provide unique insight into lithospheric tectonic processes and mechanisms. Here, we study the geomagnetic manifesta- tion of active tectonic blocks, and find a close correlation between the LMF and seismicity. Many large faults are found to closely overlap with magnetic anomalies, or are distributed along the boundaries of magnetic anomalies. Earthquakes in these fault regions have occurred on the boundaries of magnetic anomalies, or in the transition zones between posilive and negative anomalies. We ana- lyze the components of the LMF, and the LMFs at different altitudes, finding that the vertical component, Bz at 200 kin, is the most related to seismic activity. Relevant physical mechanisms are also discussed. We propose that the stress or viscosity differences caused by temperature variations, which manifest in the LMF, may be the pre- dominant reason for the correlation between the LMF and seismic activity along large faults.展开更多
Based on the research and the division of the active tectonic blocks and their boundaries on the Chinese mainland, the feature of the large earthquake activities on the 24 boundaries between the 6 active tectonic bloc...Based on the research and the division of the active tectonic blocks and their boundaries on the Chinese mainland, the feature of the large earthquake activities on the 24 boundaries between the 6 active tectonic block regions (grade Ⅰ) and the 22 active tectonic blocks (grade Ⅱ) are studied. The seismicity levels on the active tectonic block boundaries are discussed considering the large earthquake frequency and the released strain energy in unit distance and time. The theoretic maximal magnitude and the recurrence period of each boundary are then calculated from the G-R relation. By comparing this with the actual earthquake records, it is found that the intensities of the earthquake deduced from the seismic activity parameter (a/b) on the main active boundaries on the Chinese mainland are consistent with that of the natural earthquakes. Meanwhile, an inverse relation is found between the recurrence periods of large earthquakes and the tectonic motion rate on the boundaries. These results show that the a, b values of each boundary obtained in this paper are valuable. In addition, the present seismic activities and hazards of these boundaries are also probed into with the historical data and their elapsed time on each boundary based on the hypothesis that the large earthquakes satisfy Poisson distribution.展开更多
The Wenchuan earthquake occurred near the "triple junction" linking the Bayan Har block, the South China block, and the Sichuan-Yunnan rhombic block, and its influences on the surrounding blocks and the main...The Wenchuan earthquake occurred near the "triple junction" linking the Bayan Har block, the South China block, and the Sichuan-Yunnan rhombic block, and its influences on the surrounding blocks and the main fault zones in the Sichuan-Yunnan region, i.e., the block boundary zone, cannot be ignored. In this paper, changes of movement and stress of the fault zones before and after a strong earthquake were simulated based on the GPS repetition survey results recently obtained during 1999–2007, 2009–2011, and 2011–2013 with a two-dimensional finite-element contact model and the "block- loading" method. The results show that, before the Wenchuan earthquake, the movement of the Longmenshan fault zone was very slow and its compressive stress accumulated rapidly; after the Wenchuan earthquake, movements toward the E-SSE direction of the Bayan Har, southwestern Yunnan, and rhombic blocks were enhanced, and the dextral and horizontal compressive speeds and annual accumulative compressive stress of the Longmenshan fault zone increased markedly by factors of 4.5, 2.1, and 2.5, respectively. The southern Xianshuihe, Anninghe, Zemuhe, Daliangshan, and Lijiang-Xiaojinhe fault zones accumulated compressive stress rapidly, forming enhanced compressive stress zones along a NE strike crossing the central part of the Sichuan-Yunnan region. The tensional movement of the Xianshuihe fault zone was enhanced and the slip movement in the central part of the zone was reversed in a short time. The changes are tightly related to the medium-intensity earthquakes that occurred during the same period in this region, revealing that the spatial migration of seismic activity is related to changes of movement of the blocks.展开更多
The kinematic characteristics of the Sanguankou-Niushoushan fault(SGK-NSSF) are of great significance to the understanding of the extension of the arc tectonic belt in the northeastern margin of the Tibet Plateau. U...The kinematic characteristics of the Sanguankou-Niushoushan fault(SGK-NSSF) are of great significance to the understanding of the extension of the arc tectonic belt in the northeastern margin of the Tibet Plateau. Using field surveys and various data collection methods, including large-scale geological mapping, measurement of typical topographies, and dating of sedimentary strata, it was determined that the SGK-NSSF exhibits obvious dextral strike-slip characteristics and thus is not a sinistral strike-slip fault, as believed by previous researchers. The results of this study show that the geological boundaries for the Paleozoic, Mesozoic, and Cenozoic eras were all dextrally dislocated by the fault, with the faulted displacements being similar. The maximum strike-slip displacement of the fault, after elimination of topographic effects, was found to be 961±6 m. The Sanguankou fault at the northern section exhibits obvious characteristics of more recent activities, with a series of small gullies having undergone synchronized dextral writhing after traversing the fault. The average horizontal slip rate of the fault since the late Quaternary was determined to be approximately 0.35 mm/a. The pre-existing fold structures formed during the late Pliocene were dislocated by the fault and became ex situ, indicating that dextral strike-slip of the fault could not have occurred prior to the late Pliocene. The maximum displacements and average slip rates were used to estimate the onset time of the dextral strike-slip activities of the fault as being after 2.7 Ma. In this study, the understanding of previous researchers concerning the extension in the northeastern margin of the Tibet Plateau was combined with analyses of the successive relationships between fold deformations and fault activities. This led to the finding that the extension in the northeastern margin of the Tibet Plateau reached the vicinity of the SGK-NSSF during the late Pliocene(~2.7 Ma), causing regional uplift and fold deformations of the strata there. During the early Quaternary, the northeastern compression of the Tibet Plateau and the counterclockwise rotation of the Ordos block collectively resulted in the dextral strike-slip activities of the SGK-NSSF. This then formed the foremost margin of the arc tectonic belt extension in the northeastern margin of the Tibet Plateau.展开更多
基金The National Natural Science Foundation of China under contract Nos 41706055,41776072,41602092,4106035 and41776072the Natural Science Foundation of Guangdong Province under contract Nos 2018A030313168 and 2018B030311030the National Marine Geology Special Project under contract Nos DD20160147 and DD20189643。
文摘Identifying distinct tectonic units is key to understanding the geotectonic framework and distribution law of oil and gas resources.The South China Sea and its adjacent areas have undergone complex tectonic evolution processes,and the division of tectonic units is controversial.Guided by block tectonics theory,this study divide the South China Sea and its adjacent areas into several distinguished tectonic units relying on known boundary markers such as sutures(ophiolite belts),subduction-collision zones,orogenic belts,and deep faults.This work suggests that the study area is occupied by nine stable blocks(West Burma Block,Sibumasu Block,LanpingSimao Block,Indochina Block,Yangtze Block,Cathaysian Block,Qiongnan Block,Nansha Block,and Northwest Sulu Block),two suture zones(Majiang suture zone and Southeast Yangtze suture zone),two accretionary zones(Sarawak-Sulu accretionary zone and East Sulawesi accretionary zone),one subduction-collision zone(RakhineJava-Timor subduction-collision zone),one ramp zone(Philippine islands ramp zone),and six small oceanic marginal sea basins(South China Sea Basin,Sulu Sea Basin,Sulawesi Sea Basin,Banda Sea Basin,Makassar Basin,and Andaman Sea Basin).This division reflects the tectonic activities,crustal structural properties,and evolutionary records of each evaluated tectonic unit.It is of great theoretical and practical importance to understand the tectonic framework to support the exploration of oil and gas resources in the South China Sea and its adjacent areas.
文摘In the paper, the kinematic model of tectonic blocks in southwest China is studied based on the precision GPS observations carried out under the major subject of 'Studies on Current Crustal Movement and Geodynamics' which belongs to the State Climbing Project. It is believed that at present, the data of high precision GPS observation may provide convincing information related to the horizontal movement of tectonic blocks in the Chinese mainland. The preliminary results obtained from the kinematic model have given some direct evidences for the research of dynamic mechanism of crustal deformation in the Chinese mainland and on the basis of which, the kinematic characteristics and their relations to the seismicity and seismic risk in the reobserved region are analysed. The preliminary observation results are encouraging.
文摘Based on the hypothesis of the active tectonic blocks on the Chinese continent and its adjacent regions (both the method of the DDA on a spherical surface and the GPS survey results observed from 1991 to 2001 are used), the movements and deformations of each active tectonic block are calculated. The calculation results show that although the movements and deformations of active tectonic blocks in the eastern region and in the western region of China are different, active tectonic blocks in the same active tectonic block region are coherent. Then, the relative velocities of the active tectonic blocks’ boundary zones are calculated, and the relationship between current crustal motion and strong seismic activities is discussed. Earthquakes ( M S≥7 0) on the Chinese continent since 1988 all occurred on boundary zones of active tectonic blocks with high slipping speed.
文摘In this paper, the typical velocity structures and average velocities of the crust in six different active tectonic block regions are presented on the basis of previous studies and their tectonic implications are discussed. The results show that different tectonic units have different features of crustal velocity structures. In general, there are low velocity distributions in the crust in regions with strong tectonic activities, and the scales of low velocity distributions are related to the tectonic activities. The average velocities are relatively low in such regions. This reflects strong crustal deformation and the variations of states of matter in the crust resulting from strong tectonic movements. These regions are also seismically active zones frequented by strong earthquakes. Therefore, studying crustal velocity structures of these regions is of great importance to understanding crustal geodynamic process and seismogenic tectonic background.
基金supported by the National Natural Science Foundation of China(grants No.41202162 and 41572183)
文摘Objective The lateral extrusion of southeastern edge of the crustal materials around the Tibetan Plateau since the Oligocene is believed to be one of the main inducements of-1300 km latitudinal crustal convergence in the Tibetan Plateau, since the collision of India and Eurasia in the Paleogene. Two end-member models were used to describe the process of lateral extrusion of crustal material on the southeastern edge of the Tibetan Plateau. The "tectonic escape" model suggests the Indochina Block, Chuandian Fragment and Shan-Thai Block have experienced lateral extrusion along strike-slip fault systems, and the "crustal flow" model suggests that the upper crust has undergone southeastward escape in the form of ductile deformation, driven by viscous lower crustal flow channels. In addition, the GPS observations surrounding the Tibetan Plateau indicate that crustal materials currently experience clockwise rotation around the Eastern Himalaya syntaxis. This work conducted paleomagnetic studies in the Cretaceous and Paleogene red-beds along the southeastern margin of Tibetan Plateau,
基金supported by the (973) National Basic Research Program of China (2011CB403006)
文摘1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial potash
基金the National Key R&D Program of China(grants 2017YFC1500501).
文摘The long-term earthquake prediction from 2021 to 2030 is carried out by researching the active tectonic block boundary zones in the Chinese mainland.Based on the strong earthquake recurrence model,the cumulative probability of each target fault in the next 10 years is given by the recurrence period and elapsed time of each fault,which are adopted from relevant studies such as seismological geology,geodesy,and historical earthquake records.Based on the long-term predictions of large earthquakes throughout the world,this paper proposes a comprehensive judgment scheme based on the fault segments with the seismic gap,motion strongly locked,sparse small-moderate earthquakes,and apparent Coulomb stress increase.This paper presents a comprehensive analysis of the relative risk for strong earthquakes that may occur in the coming 10 years on the major faults in the active tectonic block boundary zones in the Chinese mainland.The present loading rate of each fault is first constrained by geodetic observations;the cumulative displacement of each fault is then estimated by the elapsed time since the most recent strong earthquake.
文摘The ca. 126e120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as>3000 t Au. The vein and disseminated ores are hosted by NE-to NNE-trending brittle normal faults that parallel the margins of ca. 165e150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Pre-cambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous "Yan-shanian"intracontinental extensional deformation and associated gold formation. 〈br〉 Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong de-posits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolati-lization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130e123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineral-ization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate subduction, and seismicity along the continental-scale Tan-Lu fault. Possible ore genesis scenarios include those where ore fluids were produced directly by the metamorphism of oceanic lithosphere and overlying sediment on the subducting paleo-Pacific slab, or by devolatilization of an enriched mantle wedge above the slab. Both the sulfur and gold could be sourced from either the oceanic sediments or the serpentinized mantle. A better understanding of the architecture of the paleo-Pacific slab during Early Cretaceous below the eastern margin of China is essential to determination of the validity of possible models.
文摘Geological anomaly is a geological body or geological body combination different from its surroundings in composition, structure, or genetic sequence. If there is a value (value interval ) that works as a valve representing the background field, exceeding or lower than the valve value,it is called a geological anomaly. Geological anomalies can be divided into high geological anomaly and low geological anomaly .The former shows the area that is more complex in composition, Structure or genetic sequence than its surroundings; while the latter just gives an opposite indication, i. e. much simpler. According to their distribution and delimitation markers, geological anomalies can be classified into (1)global geological anomaly; (2)regional geological anomaly; (3) local geological anomaly; (4) minor geological anomaly and (5)micro-geological anomaly .The methods for delimiting geological anomalies include (1)crustal elevation-subsidence coefficieat (G value ) determination; (2) geological complex coefficient (C value ) determination; (3) entropy (H value ) determination; (4) geological similarity coefficient (S value ) determination and (5 ) geological correlation coefficient (R value ) determination. As the result of the movements of Eurasian, Pacific and Indian Plates, the Chinese geological anomalies, including 11 regional ones and 32 main local ones, most Paleozoic in age, are distributed in strip on the margin or the outer and inner folded zones in the east and west arcs of the block symmetric arc tectonic system (BSATS), which controls the distribution of various minerals in China. Thus, geological anomaly theory is of great significance in searching for large, super-large and very large ore deposits.
文摘According to the results of careful re-proeessing of data obtained from two GPS survey campaigns of crustal movement monitoring network in Chinese mainland carried out in 1994 and 1996, the crustal horizontal movement characteristics in Chinesc mainland are studied in the paper.In the analysis, a relatively consummate deformation model in which the deformation is described by the relative movement between the tectonic blocks with interior strain and the corresponding analysis method are used. The magnitude of movement along the boundary zones between the tectonic blocks is calculated. And the characters and intensities between the main boundny zones are compared.
基金funded by the Seismic Industry-Specific (201108004)Liguo Jiao is also supported by the Central Research Institutes of Basic Research and Public Service Special at Institute of Geophysics, China Earthquake Administration (DQJB11B13)National Nature Science Foundation of China (41174056,41274079)
文摘The lithospheric magnetic field (LMF) in China and its surrounding are calculated using the spherical har- monic coefficients given by the NGDC-720 model. The LMF comes from the magnetization of minerals in the crust and in the uppermost mantle. It may, therefore, provide unique insight into lithospheric tectonic processes and mechanisms. Here, we study the geomagnetic manifesta- tion of active tectonic blocks, and find a close correlation between the LMF and seismicity. Many large faults are found to closely overlap with magnetic anomalies, or are distributed along the boundaries of magnetic anomalies. Earthquakes in these fault regions have occurred on the boundaries of magnetic anomalies, or in the transition zones between posilive and negative anomalies. We ana- lyze the components of the LMF, and the LMFs at different altitudes, finding that the vertical component, Bz at 200 kin, is the most related to seismic activity. Relevant physical mechanisms are also discussed. We propose that the stress or viscosity differences caused by temperature variations, which manifest in the LMF, may be the pre- dominant reason for the correlation between the LMF and seismic activity along large faults.
基金The work was supported bythe public welfare programofthe Ministry of Science and Technology of China (2004DIA3J010)the special preparatoryresearch of national keyfun-damental research project (2002CCD01700)the Young Scientists Funds of Institute of Earthquake Science , CEA(QN200401) .
文摘Based on the research and the division of the active tectonic blocks and their boundaries on the Chinese mainland, the feature of the large earthquake activities on the 24 boundaries between the 6 active tectonic block regions (grade Ⅰ) and the 22 active tectonic blocks (grade Ⅱ) are studied. The seismicity levels on the active tectonic block boundaries are discussed considering the large earthquake frequency and the released strain energy in unit distance and time. The theoretic maximal magnitude and the recurrence period of each boundary are then calculated from the G-R relation. By comparing this with the actual earthquake records, it is found that the intensities of the earthquake deduced from the seismic activity parameter (a/b) on the main active boundaries on the Chinese mainland are consistent with that of the natural earthquakes. Meanwhile, an inverse relation is found between the recurrence periods of large earthquakes and the tectonic motion rate on the boundaries. These results show that the a, b values of each boundary obtained in this paper are valuable. In addition, the present seismic activities and hazards of these boundaries are also probed into with the historical data and their elapsed time on each boundary based on the hypothesis that the large earthquakes satisfy Poisson distribution.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41472180 & 41172180)
文摘The Wenchuan earthquake occurred near the "triple junction" linking the Bayan Har block, the South China block, and the Sichuan-Yunnan rhombic block, and its influences on the surrounding blocks and the main fault zones in the Sichuan-Yunnan region, i.e., the block boundary zone, cannot be ignored. In this paper, changes of movement and stress of the fault zones before and after a strong earthquake were simulated based on the GPS repetition survey results recently obtained during 1999–2007, 2009–2011, and 2011–2013 with a two-dimensional finite-element contact model and the "block- loading" method. The results show that, before the Wenchuan earthquake, the movement of the Longmenshan fault zone was very slow and its compressive stress accumulated rapidly; after the Wenchuan earthquake, movements toward the E-SSE direction of the Bayan Har, southwestern Yunnan, and rhombic blocks were enhanced, and the dextral and horizontal compressive speeds and annual accumulative compressive stress of the Longmenshan fault zone increased markedly by factors of 4.5, 2.1, and 2.5, respectively. The southern Xianshuihe, Anninghe, Zemuhe, Daliangshan, and Lijiang-Xiaojinhe fault zones accumulated compressive stress rapidly, forming enhanced compressive stress zones along a NE strike crossing the central part of the Sichuan-Yunnan region. The tensional movement of the Xianshuihe fault zone was enhanced and the slip movement in the central part of the zone was reversed in a short time. The changes are tightly related to the medium-intensity earthquakes that occurred during the same period in this region, revealing that the spatial migration of seismic activity is related to changes of movement of the blocks.
基金supported by the Fundamental Research Funds in Institute of Geology, China Earthquake Administration (Grant No. IGCEA1220)Special Project on Earthquake Research (Grant No. 201308012)+1 种基金National Natural Science Foundation of China (Grant Nos. 41202158, 41372220 & 41590861)Science for Earthquake Resilience (Grant No. XH14052)
文摘The kinematic characteristics of the Sanguankou-Niushoushan fault(SGK-NSSF) are of great significance to the understanding of the extension of the arc tectonic belt in the northeastern margin of the Tibet Plateau. Using field surveys and various data collection methods, including large-scale geological mapping, measurement of typical topographies, and dating of sedimentary strata, it was determined that the SGK-NSSF exhibits obvious dextral strike-slip characteristics and thus is not a sinistral strike-slip fault, as believed by previous researchers. The results of this study show that the geological boundaries for the Paleozoic, Mesozoic, and Cenozoic eras were all dextrally dislocated by the fault, with the faulted displacements being similar. The maximum strike-slip displacement of the fault, after elimination of topographic effects, was found to be 961±6 m. The Sanguankou fault at the northern section exhibits obvious characteristics of more recent activities, with a series of small gullies having undergone synchronized dextral writhing after traversing the fault. The average horizontal slip rate of the fault since the late Quaternary was determined to be approximately 0.35 mm/a. The pre-existing fold structures formed during the late Pliocene were dislocated by the fault and became ex situ, indicating that dextral strike-slip of the fault could not have occurred prior to the late Pliocene. The maximum displacements and average slip rates were used to estimate the onset time of the dextral strike-slip activities of the fault as being after 2.7 Ma. In this study, the understanding of previous researchers concerning the extension in the northeastern margin of the Tibet Plateau was combined with analyses of the successive relationships between fold deformations and fault activities. This led to the finding that the extension in the northeastern margin of the Tibet Plateau reached the vicinity of the SGK-NSSF during the late Pliocene(~2.7 Ma), causing regional uplift and fold deformations of the strata there. During the early Quaternary, the northeastern compression of the Tibet Plateau and the counterclockwise rotation of the Ordos block collectively resulted in the dextral strike-slip activities of the SGK-NSSF. This then formed the foremost margin of the arc tectonic belt extension in the northeastern margin of the Tibet Plateau.