In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face ...In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.展开更多
Evaluation of the performance of existing support in underground tunnels is of great importance for production and interests.Based on field investigation,the shape and number of joints and fractures were investigated ...Evaluation of the performance of existing support in underground tunnels is of great importance for production and interests.Based on field investigation,the shape and number of joints and fractures were investigated in the mining area.Then,the stability of each structural blocks is analyzed by 3D wedge stability analysis software(Unwedge).Moreover,a new analysis method based on critical block theory is applied to analyze the stability of excavated laneways in continuous and discontinuous rock and monitor the stress changes in a fractured tunnel rock mass.The test results indicate that the 3D wedge stability analysis software for underground excavation can evaluate deep tunnel support.Besides,there is no direct relation between the size of the block and the instability of the tunnel.The support method,on large and thick key blocks,needs to be improved.In a broken tunnel section,U-shaped steel support can effectively promote the stress state of the surrounding rock.By monitoring the surrounding rock,it is proven that the vibrating string anchor stress monitoring system is an efficient and real-time method for tunnel stability evaluation.展开更多
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid...Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one.展开更多
The economies of China-Japan-Korea (CJK) are complementary, with their proximity resulting in the three countries having a high degree of interdependence with respect to trade. Currently, trade among these countries...The economies of China-Japan-Korea (CJK) are complementary, with their proximity resulting in the three countries having a high degree of interdependence with respect to trade. Currently, trade among these countries relies mainly on port-centered shipping. The development of the shipping network is integral for in-depth integration of CJK trade. This paper analyzes the overall characteristics, centrality, spatial structure, and vulnerability of the CJK shipping network using the methods of complex network analysis, blocking flow theory, and interruption and deletion of hub ports. The main findings are as follows: 1) The CJK shipping network has a small average path length and clustering coefficient, and its degree distribution follows a power-law distribution, which make the network present obvious characteristics of a Barabasi-Albert scale-free. 2) The characteristics of the multi-center point of the CJK shipping network can alleviate traffic pressure. At the same time, the network shows a clear hierarchy in the port transportation system, with cargo transport relying mainly on the ‘hub port-hub port' connection. 3) The CJK shipping network is relatively stable. Compared with ports in Japan and Korea, the main hub ports in China have a greater impact on the stability of the shipping network, in particular those ports of the central coastal region, including Shanghai, Ningbo, and Lianyungang.展开更多
The key-blocks are the main reason accounting for structural failure in discontinuous rock slopes, and automated identification of these block types is critical for evaluating the stability conditions. This paper pres...The key-blocks are the main reason accounting for structural failure in discontinuous rock slopes, and automated identification of these block types is critical for evaluating the stability conditions. This paper presents a classification framework to categorize rock blocks based on the principles of block theory. The deep convolutional neural network(CNN) procedure was utilized to analyze a total of 1240 highresolution images from 130 slope masses at the South Pars Special Zone, Assalouyeh, Southwest Iran.Based on Goodman’s theory, a recognition system has been implemented to classify three types of rock blocks, namely, key blocks, trapped blocks, and stable blocks. The proposed prediction model has been validated with the loss function, root mean square error(RMSE), and mean square error(MSE). As a justification of the model, the support vector machine(SVM), random forest(RF), Gaussian naïve Bayes(GNB), multilayer perceptron(MLP), Bernoulli naïve Bayes(BNB), and decision tree(DT) classifiers have been used to evaluate the accuracy, precision, recall, F1-score, and confusion matrix. Accuracy and precision of the proposed model are 0.95 and 0.93, respectively, in comparison with SVM(accuracy = 0.85, precision = 0.85), RF(accuracy = 0.71, precision = 0.71), GNB(accuracy = 0.75,precision = 0.65), MLP(accuracy = 0.88, precision = 0.9), BNB(accuracy = 0.75, precision = 0.69), and DT(accuracy = 0.85, precision = 0.76). In addition, the proposed model reduced the loss function to less than 0.3 and the RMSE and MSE to less than 0.2, which demonstrated a low error rate during processing.展开更多
Slope stability is one of the most important topics of engineering geology with a background of more than 300 years.So far,various stability assessment techniques have been developed which include a range of simple ev...Slope stability is one of the most important topics of engineering geology with a background of more than 300 years.So far,various stability assessment techniques have been developed which include a range of simple evaluations,planar failure,limit state criteria,limit equilibrium analysis,numerical methods,hybrid and high-order approaches which are implemented in two-dimensional(2D)and three-dimensional(3D)space.In the meantime,limit equilibrium methods due to their simplicity,short analysis time,coupled with probabilistic and statistics functions to estimate the safety factor(F.S),probable slip surface,application on different failure mechanisms,and varied geological conditions has been received special attention from researchers.The presented paper provides a review to limit equilibrium methods used for discontinuous rock slope stability analyses with different failure mechanisms of natural and cut slopes.The article attempted to provide a systematic review for rock slope stability analysis outlook based on limit equilibrium approaches.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42102313 and 52104125)the Fundamental Research Funds for the Central Universities(Grant No.B240201094).
文摘In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.
基金Projects(51964007,51774101)supported by the National Natural Science Foundation of ChinaProject(2016-4011)supported by the High-level Innovative Talents Training Project in Guizhou Province,ChinaProject(2019-5619)supported by the Guizhou Mining Power Disaster Early Warning and Control Technology Innovation Team,China。
文摘Evaluation of the performance of existing support in underground tunnels is of great importance for production and interests.Based on field investigation,the shape and number of joints and fractures were investigated in the mining area.Then,the stability of each structural blocks is analyzed by 3D wedge stability analysis software(Unwedge).Moreover,a new analysis method based on critical block theory is applied to analyze the stability of excavated laneways in continuous and discontinuous rock and monitor the stress changes in a fractured tunnel rock mass.The test results indicate that the 3D wedge stability analysis software for underground excavation can evaluate deep tunnel support.Besides,there is no direct relation between the size of the block and the instability of the tunnel.The support method,on large and thick key blocks,needs to be improved.In a broken tunnel section,U-shaped steel support can effectively promote the stress state of the surrounding rock.By monitoring the surrounding rock,it is proven that the vibrating string anchor stress monitoring system is an efficient and real-time method for tunnel stability evaluation.
基金funded by National Natural Science Foundation,China(Grant Nos.41972264 and 42207214)Zhejiang Provincial Natural Science Foundation,China(Grant No.LR22E080002).
文摘Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one.
基金Under the auspices of National Natural Science Foundation of China(No.41571126,41571122)Development Plan Outstanding Young Scholars in Universities of Liaoning Province(No.WJQ2015020)
文摘The economies of China-Japan-Korea (CJK) are complementary, with their proximity resulting in the three countries having a high degree of interdependence with respect to trade. Currently, trade among these countries relies mainly on port-centered shipping. The development of the shipping network is integral for in-depth integration of CJK trade. This paper analyzes the overall characteristics, centrality, spatial structure, and vulnerability of the CJK shipping network using the methods of complex network analysis, blocking flow theory, and interruption and deletion of hub ports. The main findings are as follows: 1) The CJK shipping network has a small average path length and clustering coefficient, and its degree distribution follows a power-law distribution, which make the network present obvious characteristics of a Barabasi-Albert scale-free. 2) The characteristics of the multi-center point of the CJK shipping network can alleviate traffic pressure. At the same time, the network shows a clear hierarchy in the port transportation system, with cargo transport relying mainly on the ‘hub port-hub port' connection. 3) The CJK shipping network is relatively stable. Compared with ports in Japan and Korea, the main hub ports in China have a greater impact on the stability of the shipping network, in particular those ports of the central coastal region, including Shanghai, Ningbo, and Lianyungang.
基金support provided by the National Natural Science Foundation of China(Grant No.42077235)the National Key Research and Development Program of China(Grant No.2018YFC1505104).
文摘The key-blocks are the main reason accounting for structural failure in discontinuous rock slopes, and automated identification of these block types is critical for evaluating the stability conditions. This paper presents a classification framework to categorize rock blocks based on the principles of block theory. The deep convolutional neural network(CNN) procedure was utilized to analyze a total of 1240 highresolution images from 130 slope masses at the South Pars Special Zone, Assalouyeh, Southwest Iran.Based on Goodman’s theory, a recognition system has been implemented to classify three types of rock blocks, namely, key blocks, trapped blocks, and stable blocks. The proposed prediction model has been validated with the loss function, root mean square error(RMSE), and mean square error(MSE). As a justification of the model, the support vector machine(SVM), random forest(RF), Gaussian naïve Bayes(GNB), multilayer perceptron(MLP), Bernoulli naïve Bayes(BNB), and decision tree(DT) classifiers have been used to evaluate the accuracy, precision, recall, F1-score, and confusion matrix. Accuracy and precision of the proposed model are 0.95 and 0.93, respectively, in comparison with SVM(accuracy = 0.85, precision = 0.85), RF(accuracy = 0.71, precision = 0.71), GNB(accuracy = 0.75,precision = 0.65), MLP(accuracy = 0.88, precision = 0.9), BNB(accuracy = 0.75, precision = 0.69), and DT(accuracy = 0.85, precision = 0.76). In addition, the proposed model reduced the loss function to less than 0.3 and the RMSE and MSE to less than 0.2, which demonstrated a low error rate during processing.
文摘Slope stability is one of the most important topics of engineering geology with a background of more than 300 years.So far,various stability assessment techniques have been developed which include a range of simple evaluations,planar failure,limit state criteria,limit equilibrium analysis,numerical methods,hybrid and high-order approaches which are implemented in two-dimensional(2D)and three-dimensional(3D)space.In the meantime,limit equilibrium methods due to their simplicity,short analysis time,coupled with probabilistic and statistics functions to estimate the safety factor(F.S),probable slip surface,application on different failure mechanisms,and varied geological conditions has been received special attention from researchers.The presented paper provides a review to limit equilibrium methods used for discontinuous rock slope stability analyses with different failure mechanisms of natural and cut slopes.The article attempted to provide a systematic review for rock slope stability analysis outlook based on limit equilibrium approaches.