In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of ...In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).展开更多
We consider the blow-up solutions to the following coupled nonlinear Schr¨odinger equations{iu_(t)+Δu+(|u|^(2p)+|u|^(p−1)|v|^(p+1))u=0,iv_(t)+Δv+(|v|^(2p)+|v|^(p−1)|u|^(p+1))v=0,u(0,x)=u0(x),v(0,x)=v0(x),x 2 R ...We consider the blow-up solutions to the following coupled nonlinear Schr¨odinger equations{iu_(t)+Δu+(|u|^(2p)+|u|^(p−1)|v|^(p+1))u=0,iv_(t)+Δv+(|v|^(2p)+|v|^(p−1)|u|^(p+1))v=0,u(0,x)=u0(x),v(0,x)=v0(x),x 2 R N,t0.On the basis of the conservation of mass and energy,we establish two sufficient conditions to obtain the existence of a blow-up for radially symmetric solutions.These results improve the blow-up result of Li and Wu[10]by dropping the hypothesis of finite variance((|x|u_(0),|x|v_(0))∈ L^(2)(R^(N))×L^(2)(R^(N))).展开更多
Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we pro...Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we provide sufficient and necessary conditions on the existence of boundary blow-up solutions to the p-Laplacian problem△_(p)u=b(x)g(u)for x∈Ω,u(x)→+∞as dist(x,■Ω)→0.The estimates of such solutions are also investigated.Moreover,when b has strong singularity,the nonexistence of boundary blow-up(radial)solutions and infinitely many radial solutions are also considered.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LY21A010016)the National Natural Science Foundation of China(11901550).
文摘In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).
基金the National Natural Science Foundation of China(11771314)the Sichuan Science and Technology Program(2022JDTD0019)the Guizhou Province Science and Technology Basic Project(Qian Ke He Basic[2020]1Y011)。
文摘We consider the blow-up solutions to the following coupled nonlinear Schr¨odinger equations{iu_(t)+Δu+(|u|^(2p)+|u|^(p−1)|v|^(p+1))u=0,iv_(t)+Δv+(|v|^(2p)+|v|^(p−1)|u|^(p+1))v=0,u(0,x)=u0(x),v(0,x)=v0(x),x 2 R N,t0.On the basis of the conservation of mass and energy,we establish two sufficient conditions to obtain the existence of a blow-up for radially symmetric solutions.These results improve the blow-up result of Li and Wu[10]by dropping the hypothesis of finite variance((|x|u_(0),|x|v_(0))∈ L^(2)(R^(N))×L^(2)(R^(N))).
基金supported by the Beijing Natural Science Foundation(1212003)。
文摘Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we provide sufficient and necessary conditions on the existence of boundary blow-up solutions to the p-Laplacian problem△_(p)u=b(x)g(u)for x∈Ω,u(x)→+∞as dist(x,■Ω)→0.The estimates of such solutions are also investigated.Moreover,when b has strong singularity,the nonexistence of boundary blow-up(radial)solutions and infinitely many radial solutions are also considered.