There are many blue shifted Galaxies in our universe. Here we will see old simulations to make such predictions from the output graphs using SITA simulations. There are four new simulations also presented here. In the...There are many blue shifted Galaxies in our universe. Here we will see old simulations to make such predictions from the output graphs using SITA simulations. There are four new simulations also presented here. In these sets of simulations, different point masses are placed in different distances in a 3D Cartesian coordinate grid;and these point masses are allowed to move on universal gravitation force (UGF) acting on each mass at that instant of time at its position. The output pictures depict the three dimensional orbit formations of point masses after some iterations. In an orbit so formed, some Galaxies are coming near (Blue shifted) and some are going away (Red shifted). In this paper, the simulations predicted the existence of a large number of Blue shifted Galaxies, in an expanding universe, in 2004 itself. Over 8300 blue shifted galaxies have been discovered extending beyond the Local Group by Hubble Space Telescope (HST) in the year 2009. Thus Dynamic Universe model predictions came true.展开更多
In recent years,Perovskite Light-Emitting Diodes(PeLEDs)have received considerable attention in academia.However,with the development of PeLEDs,commercial applications of full-color PeLED technology are largely limite...In recent years,Perovskite Light-Emitting Diodes(PeLEDs)have received considerable attention in academia.However,with the development of PeLEDs,commercial applications of full-color PeLED technology are largely limited by the progress of blue-emitting devices,due to the uncontrollably accurate composition,unstable properties,and low luminance.In this article,we add Cesium chloride(CsCl)to the quasi-two-dimensional(quasi-2D)perovskite precursor solution and achieve the relatively blue shifts of PeLED emission peak by introducing chloride ions for photoluminescence(PL)and electroluminescence(EL).We also found that the introduction of chlorine ions can make quasi-2D perovskite films thinner with smoother surface of 0.408 nm.It is interesting that the EL peaks and intensities of PeLED are adjustable under different driving voltages in high concentration chlorine-added perovskite devices,and different processes of photo-excited,photo-quenched,and photo-excited occur sequentially with the increasing driving voltage.Our work provides a path for demonstrating full-color screens in the future.展开更多
It is demonstrated that in all types of hydrogen bonds (X—H…Y) there is a balance between the long-range attractive orbital interactions and short-range Pauli/nucleus repulsions. When the proton acceptor approaches ...It is demonstrated that in all types of hydrogen bonds (X—H…Y) there is a balance between the long-range attractive orbital interactions and short-range Pauli/nucleus repulsions. When the proton acceptor approaches the proton donor from distance, the hydrogen bonding energy becomes more negative at relatively large distance, goes through a minimum, and then starts to become less negative when the short-range repulsive forces come into effect. Meanwhile, the X—H bond length increases at relatively large distances, goes through a maximum and starts to shorten when the short-range repulsive forces come into effect. Whether the hydrogen bond is red or blue shifted is dictated by the energy minimum position. If at the energy minimum position the X—H bond length is shorter than that for the free monomer, the hydrogen bond is blue shifted and vice versa. Further studies demonstrate that the recent report about the correlation of C—H bond lengths with proton donor-acceptor distance in F3C—H…OH2 and F3C—H…Cl- is not fully correct because the authors conducted an inappropriate comparison. Furthermore, it is shown for the first time that the Pauli/nucleus repulsion theory is applicable to the blue-shifted hydrogen bonds in the X—H…p complexes and the blue-shifted lithium bonds in the X—Li…Y complexes.展开更多
The optimized geometries of the complexes between HnY (n=2, 3; Y=O, S, N) and LiNH2 have been calculated at the B3LYP/6-311++G** and MP2/6-311++G** levels. Three stable complexes were obtained. Frequency analysis show...The optimized geometries of the complexes between HnY (n=2, 3; Y=O, S, N) and LiNH2 have been calculated at the B3LYP/6-311++G** and MP2/6-311++G** levels. Three stable complexes were obtained. Frequency analysis showed that the enlarged 2N―4Li presents the abnormal blue shift in three complexes. The calculated binding energy with basis set super-position error (BSSE) and zero-point vibrational energy (ZPE) corrections of complex I―III is _58.65, _31.66 and _69.59 kJ·mol-1 (MP2), respectively. Natural bond orbital theory (NBO) analysis has been performed, and the results revealed that the H2O…LiNH2 (complex I) and H3N…LiNH2 (complex III) are formed with coexisting σ-s and n-s type lithium bond interactions, complexⅡis formed with π-s type lithium bond interaction between HnY (n=2,3; Y=O, N) and LiNH2, and H2S…LiNH2 (complex II) is formed with n-s type lithium bond interaction between H2S and LiNH2. Natural resonance theory (NRT) and atom in molecule (AIM) theory have also been studied to investigate the bond order and topological properties of the lithium bond structures.展开更多
The influence of thermal treatment on Si 1-x Ge x/Si multiple-quantum wells (MQW) p-i-n photodiodes has been investigated by photocurrent spectroscopy combined with X-ray double crystal dif...The influence of thermal treatment on Si 1-x Ge x/Si multiple-quantum wells (MQW) p-i-n photodiodes has been investigated by photocurrent spectroscopy combined with X-ray double crystal diffraction.The cutoff wavelength is significantly reduced due to the Si-Ge interdiffusion and partial relaxation of the strained SiGe alloy.The values of the blue shift increase slowly with the annealing temperatures in the range of 750℃ to 850℃.However,the nonlinear changes in photocurrent intensities of the samples annealed at different temperatures have been observed,which is mainly dominated by the generation of misfit dislocations and the reduction of the point defects in the heating process.展开更多
文摘There are many blue shifted Galaxies in our universe. Here we will see old simulations to make such predictions from the output graphs using SITA simulations. There are four new simulations also presented here. In these sets of simulations, different point masses are placed in different distances in a 3D Cartesian coordinate grid;and these point masses are allowed to move on universal gravitation force (UGF) acting on each mass at that instant of time at its position. The output pictures depict the three dimensional orbit formations of point masses after some iterations. In an orbit so formed, some Galaxies are coming near (Blue shifted) and some are going away (Red shifted). In this paper, the simulations predicted the existence of a large number of Blue shifted Galaxies, in an expanding universe, in 2004 itself. Over 8300 blue shifted galaxies have been discovered extending beyond the Local Group by Hubble Space Telescope (HST) in the year 2009. Thus Dynamic Universe model predictions came true.
基金supported by the National Key Research and Development Program of China(No.2018YFB2200103)the National Natural Science Foundation of China(Nos.61875186 and 61975196)+2 种基金the Project of the Natural Science Foundation of Beijing(No.Z160002)the Key Research Projects of Beijing Information Science and Technology University(BISTU)(Nos.2019-22,2019-23,2019-27)the Beijing Key Laboratory for Sensors of BISTU(No.2019CGKF007)。
文摘In recent years,Perovskite Light-Emitting Diodes(PeLEDs)have received considerable attention in academia.However,with the development of PeLEDs,commercial applications of full-color PeLED technology are largely limited by the progress of blue-emitting devices,due to the uncontrollably accurate composition,unstable properties,and low luminance.In this article,we add Cesium chloride(CsCl)to the quasi-two-dimensional(quasi-2D)perovskite precursor solution and achieve the relatively blue shifts of PeLED emission peak by introducing chloride ions for photoluminescence(PL)and electroluminescence(EL).We also found that the introduction of chlorine ions can make quasi-2D perovskite films thinner with smoother surface of 0.408 nm.It is interesting that the EL peaks and intensities of PeLED are adjustable under different driving voltages in high concentration chlorine-added perovskite devices,and different processes of photo-excited,photo-quenched,and photo-excited occur sequentially with the increasing driving voltage.Our work provides a path for demonstrating full-color screens in the future.
基金Project supported by the National Natural Science Foundation of China (No. 20272057).
文摘It is demonstrated that in all types of hydrogen bonds (X—H…Y) there is a balance between the long-range attractive orbital interactions and short-range Pauli/nucleus repulsions. When the proton acceptor approaches the proton donor from distance, the hydrogen bonding energy becomes more negative at relatively large distance, goes through a minimum, and then starts to become less negative when the short-range repulsive forces come into effect. Meanwhile, the X—H bond length increases at relatively large distances, goes through a maximum and starts to shorten when the short-range repulsive forces come into effect. Whether the hydrogen bond is red or blue shifted is dictated by the energy minimum position. If at the energy minimum position the X—H bond length is shorter than that for the free monomer, the hydrogen bond is blue shifted and vice versa. Further studies demonstrate that the recent report about the correlation of C—H bond lengths with proton donor-acceptor distance in F3C—H…OH2 and F3C—H…Cl- is not fully correct because the authors conducted an inappropriate comparison. Furthermore, it is shown for the first time that the Pauli/nucleus repulsion theory is applicable to the blue-shifted hydrogen bonds in the X—H…p complexes and the blue-shifted lithium bonds in the X—Li…Y complexes.
基金the Natural Science Education Foundation of Gansu Province (GrantNo. 07-08-12)
文摘The optimized geometries of the complexes between HnY (n=2, 3; Y=O, S, N) and LiNH2 have been calculated at the B3LYP/6-311++G** and MP2/6-311++G** levels. Three stable complexes were obtained. Frequency analysis showed that the enlarged 2N―4Li presents the abnormal blue shift in three complexes. The calculated binding energy with basis set super-position error (BSSE) and zero-point vibrational energy (ZPE) corrections of complex I―III is _58.65, _31.66 and _69.59 kJ·mol-1 (MP2), respectively. Natural bond orbital theory (NBO) analysis has been performed, and the results revealed that the H2O…LiNH2 (complex I) and H3N…LiNH2 (complex III) are formed with coexisting σ-s and n-s type lithium bond interactions, complexⅡis formed with π-s type lithium bond interaction between HnY (n=2,3; Y=O, N) and LiNH2, and H2S…LiNH2 (complex II) is formed with n-s type lithium bond interaction between H2S and LiNH2. Natural resonance theory (NRT) and atom in molecule (AIM) theory have also been studied to investigate the bond order and topological properties of the lithium bond structures.
文摘The influence of thermal treatment on Si 1-x Ge x/Si multiple-quantum wells (MQW) p-i-n photodiodes has been investigated by photocurrent spectroscopy combined with X-ray double crystal diffraction.The cutoff wavelength is significantly reduced due to the Si-Ge interdiffusion and partial relaxation of the strained SiGe alloy.The values of the blue shift increase slowly with the annealing temperatures in the range of 750℃ to 850℃.However,the nonlinear changes in photocurrent intensities of the samples annealed at different temperatures have been observed,which is mainly dominated by the generation of misfit dislocations and the reduction of the point defects in the heating process.