Considering that modern mobile terminals possess the capability to detect users' proximity,and offer means to directly communicate and share content with the people in close area,Device-to-Device(D2D) based Proxim...Considering that modern mobile terminals possess the capability to detect users' proximity,and offer means to directly communicate and share content with the people in close area,Device-to-Device(D2D) based Proximity Services(ProSe) have recently witnessed great development,which enable users to seek for and utilize relevant value in their physical proximity,and are capable to create numerous new mobile service opportunities.However,without a breakthrough in battery technology,the energy will be the biggest limitation for ProSe.Through incorporating the features of ProSe(D2D communication technologies,abundant built-in sensors,localization-dependent,and context-aware,etc.),this paper thoroughly investigates the energy-efficient architecture and technologies for ProSe from the following four aspects:underlying networking technology,localization,application and architecture features,context-aware and user interactions.Besides exploring specific energy-efficient schemes pertaining to each aspect,this paper offers a perspective for research and applications.In brief,through classifying,summarizing and optimizing the multiple efforts on studying,modeling and reducing energy consumption for ProSe on mobile devices,the paper would provide guide for developers to build energy-efficient ProSe.展开更多
Owing to advanced storage and communication capabilities today, smart devices have become the basic interface between individuals and their surrounding environment. In particular, massive devices connect to one other ...Owing to advanced storage and communication capabilities today, smart devices have become the basic interface between individuals and their surrounding environment. In particular, massive devices connect to one other directly in a proximity area, thereby enabling abundant Proximity Services(Pro Se), which can be classified into two categories: public safety communication and social discovery. However, two challenges impede the quick development and deployment of Pro Se applications. From the viewpoint of networking, no multi-hop connectivity functionality component can be directly operated on commercially off-the-shelf devices, and from the programming viewpoint, an easily reusable development framework is lacking for developers with minimal knowledge of the underlying communication technologies and connectivity. Considering these two issues, this paper makes a twofold contribution. First, a multi-hop mesh networking based on Bluetooth Low Energy(BLE) is implemented,in which a proactive routing mechanism with link-quality(i.e., received signal strength indication) assistance is designed. Second, a Pro Se development framework called BLE Mesh is designed and implemented, which can provide significant benefits for application developers, framework maintenance professionals, and end users. Rich application programming interfaces can help developers to build Pro Se apps easily and quickly. Dependency inversion principle and template method pattern allow modules in BLE Mesh to be loosely coupled and easy to maintain and update. Callback mechanism enables modules to work smoothly together and automation processes such as registration, node discovery, and messaging are employed to offer nearly zero-configuration for end users.Finally, based on the designed Pro Se development kit, a public safety communications app called Quote Send App is built to distribute emergency information in close area without Internet access. The process illustrates the easy usability of BLE Mesh to develop Pro Se apps.展开更多
基金supported by the National Natural Science Foundation of China under Grant 61171092the JiangSu Educational Bureau Project under Grant 14KJA510004Prospective Research Project on Future Networks(JiangSu Future Networks Innovation Institute)
文摘Considering that modern mobile terminals possess the capability to detect users' proximity,and offer means to directly communicate and share content with the people in close area,Device-to-Device(D2D) based Proximity Services(ProSe) have recently witnessed great development,which enable users to seek for and utilize relevant value in their physical proximity,and are capable to create numerous new mobile service opportunities.However,without a breakthrough in battery technology,the energy will be the biggest limitation for ProSe.Through incorporating the features of ProSe(D2D communication technologies,abundant built-in sensors,localization-dependent,and context-aware,etc.),this paper thoroughly investigates the energy-efficient architecture and technologies for ProSe from the following four aspects:underlying networking technology,localization,application and architecture features,context-aware and user interactions.Besides exploring specific energy-efficient schemes pertaining to each aspect,this paper offers a perspective for research and applications.In brief,through classifying,summarizing and optimizing the multiple efforts on studying,modeling and reducing energy consumption for ProSe on mobile devices,the paper would provide guide for developers to build energy-efficient ProSe.
基金supported by the National Natural Science Foundation of China(No.61171092)Jiangsu Educational Bureau Project(No.14KJA510004)NUPTSFs(Nos.NY215177 and NY217089)
文摘Owing to advanced storage and communication capabilities today, smart devices have become the basic interface between individuals and their surrounding environment. In particular, massive devices connect to one other directly in a proximity area, thereby enabling abundant Proximity Services(Pro Se), which can be classified into two categories: public safety communication and social discovery. However, two challenges impede the quick development and deployment of Pro Se applications. From the viewpoint of networking, no multi-hop connectivity functionality component can be directly operated on commercially off-the-shelf devices, and from the programming viewpoint, an easily reusable development framework is lacking for developers with minimal knowledge of the underlying communication technologies and connectivity. Considering these two issues, this paper makes a twofold contribution. First, a multi-hop mesh networking based on Bluetooth Low Energy(BLE) is implemented,in which a proactive routing mechanism with link-quality(i.e., received signal strength indication) assistance is designed. Second, a Pro Se development framework called BLE Mesh is designed and implemented, which can provide significant benefits for application developers, framework maintenance professionals, and end users. Rich application programming interfaces can help developers to build Pro Se apps easily and quickly. Dependency inversion principle and template method pattern allow modules in BLE Mesh to be loosely coupled and easy to maintain and update. Callback mechanism enables modules to work smoothly together and automation processes such as registration, node discovery, and messaging are employed to offer nearly zero-configuration for end users.Finally, based on the designed Pro Se development kit, a public safety communications app called Quote Send App is built to distribute emergency information in close area without Internet access. The process illustrates the easy usability of BLE Mesh to develop Pro Se apps.