[Objective] The research aimed to study the relationship between the hypersensitive response of wheat to Blumeria graminis f.sp.tritici and hydrogen peroxide,3 enzyme activities changes and lay the foundation for disc...[Objective] The research aimed to study the relationship between the hypersensitive response of wheat to Blumeria graminis f.sp.tritici and hydrogen peroxide,3 enzyme activities changes and lay the foundation for discussing the resistant physiological mechanism of wheat to B.graminis.[Method] Taking B.graminis Bgt 17 and Bgt 6 and wheat cultivar Yang 158 as test materials,the number of hypersensitive cells and activities of POD,PPO and SOD in wheat leaves treated by H2O2 were determined.[Result] The mastoid...展开更多
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important disease in China. To characterize the virulence and diversity of the pathogen, 1 082 isolates were obtained from 8 major wheat-growing ...Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important disease in China. To characterize the virulence and diversity of the pathogen, 1 082 isolates were obtained from 8 major wheat-growing regions during the spring growing season in 2011. The virulence test was performed by inoculation on detached leaves of 22 differential lines with known Pm genes. Frequencies of virulence on these genotypes ranged from 0 to 97.4%. None of the 1 082 isolates was compatible to Pm21 and less than 20.0%were virulent to the genotype carrying Pm13. In contrast, the virulence frequencies of each population was more than 50.0%to differentials carrying Pm1a, Pm3b, Pm3c, Pm3f, Pm5a, Pm6 and Pm8. In total, 1 028 pathotypes were detected, of which 984 were unique. Phenotypic diversity indices revealed a high level of diversity within populations. Genetic distance between different populations correlated signiifcantly with geographical distance (R2=0.494, P 0.001). In addition, isolates from Xinjiang appear to form a separate group. Signiifcant positive or negative associations between alleles at pairs of virulence loci were detected in 57 allele pairs to Pm genes. Virulence and diversity of the 8 populations suggested that varieties with effective resistance gene combinations should be developed at a regional level.展开更多
Barley powdery mildew caused by Blumeria graminis f. sp. hordei (Bgh) is one of the most destructive foliar diseases of barley in the winter barley region of China. The evaluation and assessment of the virulence and...Barley powdery mildew caused by Blumeria graminis f. sp. hordei (Bgh) is one of the most destructive foliar diseases of barley in the winter barley region of China. The evaluation and assessment of the virulence and diversity of Bgh populations help to determine effective sources of resistance to the pathogen. 515 isolates were collected from seven populations of Bgh on cultivated barley in seven geographically distant locations in 2006. Their virulence was determined by inoculation onto 26 differential host lines. All of the isolates belonged to 58 pathotypes and 13 of which included 81% of these isolates. The most abundant pathotype was pathotype 0047 (18.3%), the second most abundant was pathotype 0045 (11.8%) and the third most abundant was pathotype 0057 (7.8%). Most of virulent genes investigated in this study showed similar frequencies in the seven different areas. These indicate that the seven locations may be in a uniform epidemiological region and barley cultivars in these areas may have similar genetic background. Diversities within these populations and distances between these populations measured by KOIND package were different. Correlations were not found between the genetic distance and the geographical distances between different locations. This suggested that long distance spread and local epidemics existed in the major winter barley growing regions in China.展开更多
To gain more precise information about molecular genetic variation for wild populations of Blumeria graminis f. sp. tritici from Qinghai Province, China, 38 single-colony isolates were purified from samples collected ...To gain more precise information about molecular genetic variation for wild populations of Blumeria graminis f. sp. tritici from Qinghai Province, China, 38 single-colony isolates were purified from samples collected from Haidong District, Xining City and Hainan Tibetan Autonomous Prefecture in 2010. The virulence of 21 isolates among them was tested at seedling stage on 34 wheat cultivars(lines) carrying known powdery mildew(Pm) resistant genes. The results showed that V1 a, V3 a, V3 c, V3 e, V5 a, V6, V7, V8 and V19 had high virulence frequencies(〉75%), indicating a wide distribution; and V1 c, V5 b, V12, V13, V16, V21, VXBD, V2+6, V2+Mld and V4+8, with less distribution, appeared to be lower in frequencies(0-20%). The Nei's gene diversity(H), Shannon's information index(I) and the percentage of polymorphic loci(P) were 0.23, 0.35 and 67.65%, respectively, which revealed a virulent diversity. The results from single nucleotide polymorphisms(SNPs) of 38 isolates showed that three housekeeping genes were found to contain a total of 9 SNP sites. 10 haplotypes(H1-H10) were inferred from the concatenated sequences, with 1 haplotype(H1) comprising of over 55% of Qinghai population. Phylogenic analysis did not show obvious geographical subdivision between the isolates. A multilocus haplotype network presented a radial structure, with H1 in the central as an inferred ancestor. Using analysis of molecular variance(AMOVA), we found 1.63% of the total variation was among populations and 98.37% within populations, with a low fixations index(FST=0.01634, P〈0.05). This revealed a relatively high genetic diversity but a low genetic divergence in Qinghai population. Moreover, the molecular data on gene flow(Nm=6.32) confirmed the migration of pathogen populations among areas in Qinghai Province.展开更多
Simple sequence repeats (SSR) have been widely used as molecular markers due to their abundance and high polymorphism, However, up to now, the SSR markers had not been developed in the obligate biotrophic phytopatho...Simple sequence repeats (SSR) have been widely used as molecular markers due to their abundance and high polymorphism, However, up to now, the SSR markers had not been developed in the obligate biotrophic phytopathogenic fungus, Blumeria graminis f.sp. tritici. From (AC)10 and (AG)10 enriched genomic libraries for Bgt, 25 primer pairs were designed using the FIASCO (fast isolation by AFLP of sequences containing repeats) protocol. Five primer pairs exhibited polymorphism with allelic diversity from two to seven alleles and produced 29 alleles in a survey of 90 isolates collected from six provinces (cities) in China, while the others displayed monomorphic. Levels of observed heterozygosity ranged from 0.000-0.044 (mean 0.025) and expected heterozygosity ranged from 0.297-0.816 (mean 0.538). These molecular markers provide a novel source to genetic diversity assays and to genetic and physical mapping ofBgt. SSR markers of Bgt need to be further explored.展开更多
Twenty isolated strains of Blumeria graminis f.sp. tritici collected from central Gansu province were studied with random amplified polymorphic DNA (RAPD) analysis. PCR amplifications using nine random primers gener...Twenty isolated strains of Blumeria graminis f.sp. tritici collected from central Gansu province were studied with random amplified polymorphic DNA (RAPD) analysis. PCR amplifications using nine random primers generated a total of 81 bands, of which, 54 were polymorphic. The total percentage of polymorphic bands varied from 50.0% to 88.9%. The average percentage based on RAPD patterns was approximately 66.7%, which indicated high heredity differentiation among isolates. Clustering analysis showed that the polymorphism of the twenty isolates was related to geographical origins but had little relationship with the physiological race.展开更多
The Italian wheat cv. Strampelli displays high resistance to powdery mildew caused by Blumeria graminis f. sp. tritici. The objective of this study was to map quantitative trait loci (QTLs) for resistance to powdery...The Italian wheat cv. Strampelli displays high resistance to powdery mildew caused by Blumeria graminis f. sp. tritici. The objective of this study was to map quantitative trait loci (QTLs) for resistance to powdery mildew in a population of 249 F2:3 lines from Strampelli/Huixianhong. Adult plant powdery mildew tests were conducted over 2 yr in Beijing and 1 yr in Anyang and simple sequence repeat (SSR) markers were used for genotyping. QTLs Qpm.caas-3BS, Qpm.eaas-5BL. 1, and Qpm.caas-7DS were consistent across environments whereas, Qpm.caas-2BS. 1 found in two environments, explained 0.4-1.6, 5.5-6.9, 27.1-34.5, and 1.0-3.5% of the phenotypic variation respectively. Qpm.caas-7DS corresponded to the genomic location of Pm38/Lr34/Yr18. Qpm.caas-4BL was identified in Anyang 2010 and Beijing 2011, accounting for 1.9-3.5% of phenotypic variation. Qpm.caas-2BS. 1 and Qpm.caas-5BL. 1 contributed by Strampelli and Qpm.caas-3BS by Huixianhong, seem to be new QTL for powdery mildew resistance. Qpm.caas-4BL, Qpm.caas-5BL.3, and Qpm.caas-7DS contributed by Strampelli appeared to be in the same genomic regions as those mapped previously for stripe rust resistance in the same population, indicating that these loci conferred resistance to both stripe rust and powdery mildew. Strampelli could be a valuable genetic resource for improving durable resistance to both powdery mildew and stripe rust in wheat.展开更多
Rye(Secale cereale genome RR),a close relative of common wheat,possesses valuable resistance genes for wheat improvement.Due to the co-evolution of pathogen virulence and host resistance,some resistance genes derived ...Rye(Secale cereale genome RR),a close relative of common wheat,possesses valuable resistance genes for wheat improvement.Due to the co-evolution of pathogen virulence and host resistance,some resistance genes derived from rye have lost effectiveness.Development and identification of new,effective resistance genes from rye is thus required.In the current study,wheat-rye line WR56 was produced through distant hybridization,embryo rescue culture,chromosome doubling and backcrossing.WR56 was then proved to be a wheat-rye 2 RL ditelosomic addition line using GISH(genomic in situ hybridization),mc-FISH(multicolor fluorescence in situ hybridization),ND-FISH(non-denaturing FISH),mc-GISH(multicolor GISH)and rye chromosome arm-specific marker analysis.WR56 exhibited a high level of adult plant resistance to powdery mildew caused by Blumeria graminis f.sp.tritici(Bgt).This resistance was carried by the added 2 RL telosomes and presumed to be different from Pm7 which is also located on chromosome arm 2 RL but confers resistance at the seedling and adult stages.WR56 will be a promising bridging parent for transfer of the resistance to a more stable wheat breeding line.A newly developed2 RL-specific KASP(kompetitive allele specific PCR)marker should expedite that work.展开更多
Genes encoding early signaling events in pathogen defense often are identified only by their phenotype. Such genes involved in barley-powdery mildew interactions include Mla, specifying race-specific resistance; Rarl ...Genes encoding early signaling events in pathogen defense often are identified only by their phenotype. Such genes involved in barley-powdery mildew interactions include Mla, specifying race-specific resistance; Rarl (Required for Mla12-specified resistance1), and Roml (Restoration of Mla-specified resistancel). The HSP90-SGT1-RAR1 complex appears to function as chaperone in MLA-specified resistance, however, much remains to be discovered regarding the precise signaling underlying plant immunity. Genetic analyses of fast-neutron mutants derived from CI 16151 (Mla6) uncovered a novel locus, designated Rar3 (R_equired for Mla6-specified resitance3). Rar3 segregates independent of Mla6 and Rarl, and rar3 mutants are susceptible to Blumeria graminis f. sp. hordei (Bgh) isolate 5874 (A VRar), whereas, wild-type progenitor plants are resistant. Comparative expression analyses of the rar3 mutant vs. its wild-type progenitor were conducted via Barleyl GeneChip and GAIIx paired-end RNA-Seq. Whereas Rarl affects transcription of relatively few genes; Rar3 appears to influence thousands, notably in genes controlling ATP binding, catalytic activity, transcription, and phosphorylation; possibly membrane bound or in the nucleus, eQTL analysis of a segregating doubled haploid population identified over two-thousand genes as being regulated by Mla (q value/FDR=0.00001), a subset of which are significant in Rar3 interactions. The intersection of datasets derived from mla-loss-of-function mutants, Mla-associated eQTL, and rar3-mediated transcriptome reprogramming are narrowing the focus on essential genes required for Mla-specified immunity.展开更多
Wild emmer wheat(Triticum dicoccoides,WEW)is an immediate progenitor of both the cultivated tetraploid and hexaploid wheats and it harbors rich genetic diversity against powdery mildew caused by Blumeria graminis f.sp...Wild emmer wheat(Triticum dicoccoides,WEW)is an immediate progenitor of both the cultivated tetraploid and hexaploid wheats and it harbors rich genetic diversity against powdery mildew caused by Blumeria graminis f.sp.tritici(Bgt).A powdery mildew resistance gene Ml I^(W172)originated from WEW accession I^(W172)(G-797-M)is fine mapped in a 0.048 centimorgan(c M)genetic interval on 7 AL,corresponding to a genomic region spanning 233 kb,1 Mb and 800 kb in Chinese Spring,WEW Zavitan,and T.urartu G1812,respectively.Ml I^(W172)encodes a typical NLR protein NLRI^(W172)and physically locates in an NBS-LRR gene cluster.NLRI^(W172)is subsequently identified as a new allele of Pm60,and its function is validated by EMS mutagenesis and transgenic complementation.Haplotype analysis of the Pm60 alleles reveals diversifications in sequence variation in the locus and presence and absence variations(PAV)in WEW populations.Four common single nucleotide variations(SNV)are detected between the Pm60 alleles from WEW and T.urartu,indicative of speciation divergence between the two different wheat progenitors.The newly identified Pm60 alleles and haplotypes in WEW are anticipated to be valuable for breeding powdery mildew resistance wheat cultivars via marker-assisted selection.展开更多
文摘[Objective] The research aimed to study the relationship between the hypersensitive response of wheat to Blumeria graminis f.sp.tritici and hydrogen peroxide,3 enzyme activities changes and lay the foundation for discussing the resistant physiological mechanism of wheat to B.graminis.[Method] Taking B.graminis Bgt 17 and Bgt 6 and wheat cultivar Yang 158 as test materials,the number of hypersensitive cells and activities of POD,PPO and SOD in wheat leaves treated by H2O2 were determined.[Result] The mastoid...
基金supported by the National Basic Research Program of China (2013CB127700)the Special Fund for Agro-Scientific Research in the Public Interest, China (201303016)
文摘Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important disease in China. To characterize the virulence and diversity of the pathogen, 1 082 isolates were obtained from 8 major wheat-growing regions during the spring growing season in 2011. The virulence test was performed by inoculation on detached leaves of 22 differential lines with known Pm genes. Frequencies of virulence on these genotypes ranged from 0 to 97.4%. None of the 1 082 isolates was compatible to Pm21 and less than 20.0%were virulent to the genotype carrying Pm13. In contrast, the virulence frequencies of each population was more than 50.0%to differentials carrying Pm1a, Pm3b, Pm3c, Pm3f, Pm5a, Pm6 and Pm8. In total, 1 028 pathotypes were detected, of which 984 were unique. Phenotypic diversity indices revealed a high level of diversity within populations. Genetic distance between different populations correlated signiifcantly with geographical distance (R2=0.494, P 0.001). In addition, isolates from Xinjiang appear to form a separate group. Signiifcant positive or negative associations between alleles at pairs of virulence loci were detected in 57 allele pairs to Pm genes. Virulence and diversity of the 8 populations suggested that varieties with effective resistance gene combinations should be developed at a regional level.
基金support from the National Natural Science Foundation of China (30671289)the National Key Tech-nologies R&D Program (2006B BAD0 2B 04)+1 种基金the Nationnal Special Fund for Agro-Scientific Research inthe Public Interest (nyhyzx017-001-barley)the Ear-marked Fund for Modern Agro-Industry Technology Research System,China
文摘Barley powdery mildew caused by Blumeria graminis f. sp. hordei (Bgh) is one of the most destructive foliar diseases of barley in the winter barley region of China. The evaluation and assessment of the virulence and diversity of Bgh populations help to determine effective sources of resistance to the pathogen. 515 isolates were collected from seven populations of Bgh on cultivated barley in seven geographically distant locations in 2006. Their virulence was determined by inoculation onto 26 differential host lines. All of the isolates belonged to 58 pathotypes and 13 of which included 81% of these isolates. The most abundant pathotype was pathotype 0047 (18.3%), the second most abundant was pathotype 0045 (11.8%) and the third most abundant was pathotype 0057 (7.8%). Most of virulent genes investigated in this study showed similar frequencies in the seven different areas. These indicate that the seven locations may be in a uniform epidemiological region and barley cultivars in these areas may have similar genetic background. Diversities within these populations and distances between these populations measured by KOIND package were different. Correlations were not found between the genetic distance and the geographical distances between different locations. This suggested that long distance spread and local epidemics existed in the major winter barley growing regions in China.
基金supported by the National Basic Research Program of China(2011CB100403 and 2013CB127704)the Special Fund for Agro-Scientific Research in the Public Interest,China(201303016)
文摘To gain more precise information about molecular genetic variation for wild populations of Blumeria graminis f. sp. tritici from Qinghai Province, China, 38 single-colony isolates were purified from samples collected from Haidong District, Xining City and Hainan Tibetan Autonomous Prefecture in 2010. The virulence of 21 isolates among them was tested at seedling stage on 34 wheat cultivars(lines) carrying known powdery mildew(Pm) resistant genes. The results showed that V1 a, V3 a, V3 c, V3 e, V5 a, V6, V7, V8 and V19 had high virulence frequencies(〉75%), indicating a wide distribution; and V1 c, V5 b, V12, V13, V16, V21, VXBD, V2+6, V2+Mld and V4+8, with less distribution, appeared to be lower in frequencies(0-20%). The Nei's gene diversity(H), Shannon's information index(I) and the percentage of polymorphic loci(P) were 0.23, 0.35 and 67.65%, respectively, which revealed a virulent diversity. The results from single nucleotide polymorphisms(SNPs) of 38 isolates showed that three housekeeping genes were found to contain a total of 9 SNP sites. 10 haplotypes(H1-H10) were inferred from the concatenated sequences, with 1 haplotype(H1) comprising of over 55% of Qinghai population. Phylogenic analysis did not show obvious geographical subdivision between the isolates. A multilocus haplotype network presented a radial structure, with H1 in the central as an inferred ancestor. Using analysis of molecular variance(AMOVA), we found 1.63% of the total variation was among populations and 98.37% within populations, with a low fixations index(FST=0.01634, P〈0.05). This revealed a relatively high genetic diversity but a low genetic divergence in Qinghai population. Moreover, the molecular data on gene flow(Nm=6.32) confirmed the migration of pathogen populations among areas in Qinghai Province.
基金supported by the National Basic Research Program of China(2006CB100203 and 2011CB100403)the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD08A05)the Special Fund for Agro-Scientific Research in the Public Interest(3-15),China
文摘Simple sequence repeats (SSR) have been widely used as molecular markers due to their abundance and high polymorphism, However, up to now, the SSR markers had not been developed in the obligate biotrophic phytopathogenic fungus, Blumeria graminis f.sp. tritici. From (AC)10 and (AG)10 enriched genomic libraries for Bgt, 25 primer pairs were designed using the FIASCO (fast isolation by AFLP of sequences containing repeats) protocol. Five primer pairs exhibited polymorphism with allelic diversity from two to seven alleles and produced 29 alleles in a survey of 90 isolates collected from six provinces (cities) in China, while the others displayed monomorphic. Levels of observed heterozygosity ranged from 0.000-0.044 (mean 0.025) and expected heterozygosity ranged from 0.297-0.816 (mean 0.538). These molecular markers provide a novel source to genetic diversity assays and to genetic and physical mapping ofBgt. SSR markers of Bgt need to be further explored.
文摘Twenty isolated strains of Blumeria graminis f.sp. tritici collected from central Gansu province were studied with random amplified polymorphic DNA (RAPD) analysis. PCR amplifications using nine random primers generated a total of 81 bands, of which, 54 were polymorphic. The total percentage of polymorphic bands varied from 50.0% to 88.9%. The average percentage based on RAPD patterns was approximately 66.7%, which indicated high heredity differentiation among isolates. Clustering analysis showed that the polymorphism of the twenty isolates was related to geographical origins but had little relationship with the physiological race.
基金supported by the National Basic Research Program of China (2013CB127700)the International Collaboration Project,Ministry of Agriculture,China (2011-G3)+1 种基金the National Natural Science Foundation of China (31261140370)the China Agriculture Research System (CARS-3-1-3)
文摘The Italian wheat cv. Strampelli displays high resistance to powdery mildew caused by Blumeria graminis f. sp. tritici. The objective of this study was to map quantitative trait loci (QTLs) for resistance to powdery mildew in a population of 249 F2:3 lines from Strampelli/Huixianhong. Adult plant powdery mildew tests were conducted over 2 yr in Beijing and 1 yr in Anyang and simple sequence repeat (SSR) markers were used for genotyping. QTLs Qpm.caas-3BS, Qpm.eaas-5BL. 1, and Qpm.caas-7DS were consistent across environments whereas, Qpm.caas-2BS. 1 found in two environments, explained 0.4-1.6, 5.5-6.9, 27.1-34.5, and 1.0-3.5% of the phenotypic variation respectively. Qpm.caas-7DS corresponded to the genomic location of Pm38/Lr34/Yr18. Qpm.caas-4BL was identified in Anyang 2010 and Beijing 2011, accounting for 1.9-3.5% of phenotypic variation. Qpm.caas-2BS. 1 and Qpm.caas-5BL. 1 contributed by Strampelli and Qpm.caas-3BS by Huixianhong, seem to be new QTL for powdery mildew resistance. Qpm.caas-4BL, Qpm.caas-5BL.3, and Qpm.caas-7DS contributed by Strampelli appeared to be in the same genomic regions as those mapped previously for stripe rust resistance in the same population, indicating that these loci conferred resistance to both stripe rust and powdery mildew. Strampelli could be a valuable genetic resource for improving durable resistance to both powdery mildew and stripe rust in wheat.
基金the National Natural Science Foundation of China(31771793 and 31801358)the National Key Research and Development Program of China(2016YFD0102002)the Natural Science Foundation of Hebei Province(C2019503064)。
文摘Rye(Secale cereale genome RR),a close relative of common wheat,possesses valuable resistance genes for wheat improvement.Due to the co-evolution of pathogen virulence and host resistance,some resistance genes derived from rye have lost effectiveness.Development and identification of new,effective resistance genes from rye is thus required.In the current study,wheat-rye line WR56 was produced through distant hybridization,embryo rescue culture,chromosome doubling and backcrossing.WR56 was then proved to be a wheat-rye 2 RL ditelosomic addition line using GISH(genomic in situ hybridization),mc-FISH(multicolor fluorescence in situ hybridization),ND-FISH(non-denaturing FISH),mc-GISH(multicolor GISH)and rye chromosome arm-specific marker analysis.WR56 exhibited a high level of adult plant resistance to powdery mildew caused by Blumeria graminis f.sp.tritici(Bgt).This resistance was carried by the added 2 RL telosomes and presumed to be different from Pm7 which is also located on chromosome arm 2 RL but confers resistance at the seedling and adult stages.WR56 will be a promising bridging parent for transfer of the resistance to a more stable wheat breeding line.A newly developed2 RL-specific KASP(kompetitive allele specific PCR)marker should expedite that work.
基金Research supported in part by USA National Science Foundation-Plant Genome Program grant(0922746)
文摘Genes encoding early signaling events in pathogen defense often are identified only by their phenotype. Such genes involved in barley-powdery mildew interactions include Mla, specifying race-specific resistance; Rarl (Required for Mla12-specified resistance1), and Roml (Restoration of Mla-specified resistancel). The HSP90-SGT1-RAR1 complex appears to function as chaperone in MLA-specified resistance, however, much remains to be discovered regarding the precise signaling underlying plant immunity. Genetic analyses of fast-neutron mutants derived from CI 16151 (Mla6) uncovered a novel locus, designated Rar3 (R_equired for Mla6-specified resitance3). Rar3 segregates independent of Mla6 and Rarl, and rar3 mutants are susceptible to Blumeria graminis f. sp. hordei (Bgh) isolate 5874 (A VRar), whereas, wild-type progenitor plants are resistant. Comparative expression analyses of the rar3 mutant vs. its wild-type progenitor were conducted via Barleyl GeneChip and GAIIx paired-end RNA-Seq. Whereas Rarl affects transcription of relatively few genes; Rar3 appears to influence thousands, notably in genes controlling ATP binding, catalytic activity, transcription, and phosphorylation; possibly membrane bound or in the nucleus, eQTL analysis of a segregating doubled haploid population identified over two-thousand genes as being regulated by Mla (q value/FDR=0.00001), a subset of which are significant in Rar3 interactions. The intersection of datasets derived from mla-loss-of-function mutants, Mla-associated eQTL, and rar3-mediated transcriptome reprogramming are narrowing the focus on essential genes required for Mla-specified immunity.
基金financially supported by National Science Foundation of China (31971876, U21A20224)Scientific Research Project of Beijing Municipal Commission of Education (KM201910020014)
文摘Wild emmer wheat(Triticum dicoccoides,WEW)is an immediate progenitor of both the cultivated tetraploid and hexaploid wheats and it harbors rich genetic diversity against powdery mildew caused by Blumeria graminis f.sp.tritici(Bgt).A powdery mildew resistance gene Ml I^(W172)originated from WEW accession I^(W172)(G-797-M)is fine mapped in a 0.048 centimorgan(c M)genetic interval on 7 AL,corresponding to a genomic region spanning 233 kb,1 Mb and 800 kb in Chinese Spring,WEW Zavitan,and T.urartu G1812,respectively.Ml I^(W172)encodes a typical NLR protein NLRI^(W172)and physically locates in an NBS-LRR gene cluster.NLRI^(W172)is subsequently identified as a new allele of Pm60,and its function is validated by EMS mutagenesis and transgenic complementation.Haplotype analysis of the Pm60 alleles reveals diversifications in sequence variation in the locus and presence and absence variations(PAV)in WEW populations.Four common single nucleotide variations(SNV)are detected between the Pm60 alleles from WEW and T.urartu,indicative of speciation divergence between the two different wheat progenitors.The newly identified Pm60 alleles and haplotypes in WEW are anticipated to be valuable for breeding powdery mildew resistance wheat cultivars via marker-assisted selection.