Under the theory structure of compressive sensing (CS), an underdetermined equation is deduced for describing the discrete solution of the electromagnetic integral equation of body of revolution (BOR), which will ...Under the theory structure of compressive sensing (CS), an underdetermined equation is deduced for describing the discrete solution of the electromagnetic integral equation of body of revolution (BOR), which will result in a small-scale impedance matrix. In the new linear equation system, the small-scale impedance matrix can be regarded as the measurement matrix in CS, while the excited vector is the measurement of unknown currents. Instead of solving dense full rank matrix equations by the iterative method, with suitable sparse representation, for unknown currents on the surface of BOR, the entire current can be accurately obtained by reconstructed algorithms in CS for small-scale undetermined equations. Numerical results show that the proposed method can greatly improve the computgtional efficiency and can decrease memory consumed.展开更多
In order to simulate metamaterial rotational symmetric open region problems,unconditionally stable perfectly match layer(PML)implementation is proposed in the body of revolution(BOR)finite-difference time-domain(FDTD)...In order to simulate metamaterial rotational symmetric open region problems,unconditionally stable perfectly match layer(PML)implementation is proposed in the body of revolution(BOR)finite-difference time-domain(FDTD)lattice.More precisely,the proposed algorithm is implemented by the Crank-Nicolson(CN)Douglas-Gunn(DG)procedure for BOR metamaterial simulation.The constitutive relationship of metamaterial can be expressed by the Drude model and calculated by the piecewise linear recursive convolution(PLRC)approach.The effectiveness including absorption,efficiency,and accuracy is demonstrated through the numerical example.It can be concluded that the proposed implementation is to take the advantages of the CNDG-PML procedure,PLRC approach,and BORFDTD algorithm in terms of considerable accuracy,enhanced absorption and remarkable efficiency.Meanwhile,it can be demonstrated that the proposed scheme can maintain its unconditional stability when the time step exceeds the CourantFriedrichs-Levy(CFL)condition.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 51477039 and 51207041the Program of Hefei Normal University under Grant Nos 2014136KJA04 and 2015TD01the Key Project of Provincial Natural Science Research of University of Anhui Province of China under Grant No KJ2015A174
文摘Under the theory structure of compressive sensing (CS), an underdetermined equation is deduced for describing the discrete solution of the electromagnetic integral equation of body of revolution (BOR), which will result in a small-scale impedance matrix. In the new linear equation system, the small-scale impedance matrix can be regarded as the measurement matrix in CS, while the excited vector is the measurement of unknown currents. Instead of solving dense full rank matrix equations by the iterative method, with suitable sparse representation, for unknown currents on the surface of BOR, the entire current can be accurately obtained by reconstructed algorithms in CS for small-scale undetermined equations. Numerical results show that the proposed method can greatly improve the computgtional efficiency and can decrease memory consumed.
基金supported by the National Key Laboratory of Science and Technology on Space Microwave(6142411032201)the National Key Research and Development Program of China(2020YFB1807400)+2 种基金the National Natural Science Foundation of China(6157102261971022)the National Key Laboratory Foundation of China(61424020305)。
文摘In order to simulate metamaterial rotational symmetric open region problems,unconditionally stable perfectly match layer(PML)implementation is proposed in the body of revolution(BOR)finite-difference time-domain(FDTD)lattice.More precisely,the proposed algorithm is implemented by the Crank-Nicolson(CN)Douglas-Gunn(DG)procedure for BOR metamaterial simulation.The constitutive relationship of metamaterial can be expressed by the Drude model and calculated by the piecewise linear recursive convolution(PLRC)approach.The effectiveness including absorption,efficiency,and accuracy is demonstrated through the numerical example.It can be concluded that the proposed implementation is to take the advantages of the CNDG-PML procedure,PLRC approach,and BORFDTD algorithm in terms of considerable accuracy,enhanced absorption and remarkable efficiency.Meanwhile,it can be demonstrated that the proposed scheme can maintain its unconditional stability when the time step exceeds the CourantFriedrichs-Levy(CFL)condition.