In a previous, primary treatise of the author the mathematical description of electron trajectories in the excited states of the H-atom could be demonstrated, starting from Bohr’s original model but modifying it thre...In a previous, primary treatise of the author the mathematical description of electron trajectories in the excited states of the H-atom could be demonstrated, starting from Bohr’s original model but modifying it three dimensionally. In a subsequent treatise, Bohr’s theorem of an unalterable angular momentum h/2π, determining the ground state of the H-atom, was revealed as an inducement by the—unalterable—electron spin. Starting from this presumption, a model of the H2-molecule could be created which exhibits well-defined electron trajectories, and which enabled computing the bond length precisely. In the present treatise, Bohr’s theorem is adapted to the atom models of helium and of neon. But while this was feasible exactly in the case of helium, the neon atom turned out to be too complex for a mathematical modelling. Nevertheless, a rough ball-and-stick model can be presented, assuming electron rings instead of electron clouds, which in the outer shell are orientated as a tetrahedron. It entails the principal statement that the neon atom does not represent a static construction with constant electron distances and velocities, but a pulsating dynamic one with permanently changing internal distances. Thus, the helium atom marks the limit for precisely describing an atom, whereby at and under this limit such a precise description is feasible, being also demonstrated in the author’s previous work. This contradicts the conventional quantum mechanical theory which claims that such a—locally and temporally—precise description of any atom or molecule structure is generally not possible, also not for the H2-molecule, and not even for the H-atom.展开更多
Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in?[13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis...Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in?[13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis perpendicular to the first one. Thereby, each rotation is induced by the spin of one electron. Thus the trajectory of each electron represents the superposition of two separate orbits, while each electron is always positioned opposite to the other one. Both electron velocities are equal and constant, due to their mutual coupling. The 3D electron orbits could be 2D-graphed by separately projecting them on the x/z-plane of a Cartesian coordinate system, and by plotting the evaluated x-, y- and z-values versus the rotation angle. Due to the decreased electron velocity, the resulting radius is twice the size of the one in the double-cone model. Even if distinct evidence is not feasible, e.g. by means of X-ray crystallographic data, this modified model appears to be the more plausible one, due to its higher cloud coverage, and since it comes closer to Kimball’s charge cloud model.展开更多
In this work, we reanalyzed the movement of an electron in the electrostatic field of nucleus. The trajectory of the electron’s motion is an ellipse with a minor semiaxis, tending towards zero. From a mathematical po...In this work, we reanalyzed the movement of an electron in the electrostatic field of nucleus. The trajectory of the electron’s motion is an ellipse with a minor semiaxis, tending towards zero. From a mathematical point of view the movement of an electron in such an orbit will be equivalent to the oscillation of an electron. The action produced by electrons in movement between stationary points is discrete and proportional to a Planck constant. This condition sets the allowable values of the electron energy and the radius of their orbit. Electrons on the same shell perform symmetric synchronous oscillations. Their frequency is of the order of 1016 Hz. Most of the time the electrons are located on the periphery of the atom, periodically they simultaneously rush to the nucleus, the atom rapidly compresses and immediately decompresses, i.e. pulsates. The model gives Bohr formula for the energy of single-electron atom and suitable values of ionization potentials of the atoms of the second period of the Periodic Table.展开更多
The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special r...The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special relativity are applied to demonstrate the conditions which can annihilate the electrostatic force acting between the nucleus and electron in the atom. This result is obtained when a suitable electron speed entering the Lorentz transformation is combined with the strength of the magnetic field acting normally to the electron orbit in the atom. In the next step, the Maxwell equation characterizing the electromotive force is applied to calculate the time interval connected with the change of the magnetic field necessary to produce the force. It is shown that the time interval obtained from the Maxwell equation, multiplied by the energy change of two neighbouring energy levels considered in the atom, does satisfy the Joule-Lenz formula associated with the quantum electron energy emission rate between the levels.展开更多
The generation of an attosecond pulse in the ultraviolet range is described in the terms of the catastrophe theory. A simple criterion of tunneling is proposed. The criterion allows constructing the quasiclassical mod...The generation of an attosecond pulse in the ultraviolet range is described in the terms of the catastrophe theory. A simple criterion of tunneling is proposed. The criterion allows constructing the quasiclassical model of the generator of attosecond laser pulses based on the interaction of an electric field of extremely powerful femtosecond pulse with the valence electron in the potential well of the gas atom.展开更多
文摘In a previous, primary treatise of the author the mathematical description of electron trajectories in the excited states of the H-atom could be demonstrated, starting from Bohr’s original model but modifying it three dimensionally. In a subsequent treatise, Bohr’s theorem of an unalterable angular momentum h/2π, determining the ground state of the H-atom, was revealed as an inducement by the—unalterable—electron spin. Starting from this presumption, a model of the H2-molecule could be created which exhibits well-defined electron trajectories, and which enabled computing the bond length precisely. In the present treatise, Bohr’s theorem is adapted to the atom models of helium and of neon. But while this was feasible exactly in the case of helium, the neon atom turned out to be too complex for a mathematical modelling. Nevertheless, a rough ball-and-stick model can be presented, assuming electron rings instead of electron clouds, which in the outer shell are orientated as a tetrahedron. It entails the principal statement that the neon atom does not represent a static construction with constant electron distances and velocities, but a pulsating dynamic one with permanently changing internal distances. Thus, the helium atom marks the limit for precisely describing an atom, whereby at and under this limit such a precise description is feasible, being also demonstrated in the author’s previous work. This contradicts the conventional quantum mechanical theory which claims that such a—locally and temporally—precise description of any atom or molecule structure is generally not possible, also not for the H2-molecule, and not even for the H-atom.
文摘Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in?[13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis perpendicular to the first one. Thereby, each rotation is induced by the spin of one electron. Thus the trajectory of each electron represents the superposition of two separate orbits, while each electron is always positioned opposite to the other one. Both electron velocities are equal and constant, due to their mutual coupling. The 3D electron orbits could be 2D-graphed by separately projecting them on the x/z-plane of a Cartesian coordinate system, and by plotting the evaluated x-, y- and z-values versus the rotation angle. Due to the decreased electron velocity, the resulting radius is twice the size of the one in the double-cone model. Even if distinct evidence is not feasible, e.g. by means of X-ray crystallographic data, this modified model appears to be the more plausible one, due to its higher cloud coverage, and since it comes closer to Kimball’s charge cloud model.
文摘In this work, we reanalyzed the movement of an electron in the electrostatic field of nucleus. The trajectory of the electron’s motion is an ellipse with a minor semiaxis, tending towards zero. From a mathematical point of view the movement of an electron in such an orbit will be equivalent to the oscillation of an electron. The action produced by electrons in movement between stationary points is discrete and proportional to a Planck constant. This condition sets the allowable values of the electron energy and the radius of their orbit. Electrons on the same shell perform symmetric synchronous oscillations. Their frequency is of the order of 1016 Hz. Most of the time the electrons are located on the periphery of the atom, periodically they simultaneously rush to the nucleus, the atom rapidly compresses and immediately decompresses, i.e. pulsates. The model gives Bohr formula for the energy of single-electron atom and suitable values of ionization potentials of the atoms of the second period of the Periodic Table.
文摘The aim of the paper is to get an insight into the time interval of electron emission done between two neighbouring energy levels of the hydrogen atom. To this purpose, in the first step, the formulae of the special relativity are applied to demonstrate the conditions which can annihilate the electrostatic force acting between the nucleus and electron in the atom. This result is obtained when a suitable electron speed entering the Lorentz transformation is combined with the strength of the magnetic field acting normally to the electron orbit in the atom. In the next step, the Maxwell equation characterizing the electromotive force is applied to calculate the time interval connected with the change of the magnetic field necessary to produce the force. It is shown that the time interval obtained from the Maxwell equation, multiplied by the energy change of two neighbouring energy levels considered in the atom, does satisfy the Joule-Lenz formula associated with the quantum electron energy emission rate between the levels.
文摘The generation of an attosecond pulse in the ultraviolet range is described in the terms of the catastrophe theory. A simple criterion of tunneling is proposed. The criterion allows constructing the quasiclassical model of the generator of attosecond laser pulses based on the interaction of an electric field of extremely powerful femtosecond pulse with the valence electron in the potential well of the gas atom.