To improve the control performance of nonlinear ultra-supercritical(USC)thermal power units,an improved min-max fuzzy model predictive tracking control(FMPTC)strategy is proposed.First,a T-S fuzzy model is established...To improve the control performance of nonlinear ultra-supercritical(USC)thermal power units,an improved min-max fuzzy model predictive tracking control(FMPTC)strategy is proposed.First,a T-S fuzzy model is established to approximate the dynamics of the nonlinear boiler-turbine system.Then,based on an extended fuzzy model containing state variables and output variables,a min-max FMPTC is derived for output regulation while ensuring the closed-loop system stability and the inputs in their given constraints.For greater controller design freedom,the developed controller adopts a new state-and output-based objective function.In addition,the observer estimation error is regarded as a bounded disturbance,ensuring the stability of the entire closed-loop control system.Simulation results on a 1000 MW USC boiler-turbine model illustrate the effectiveness of the proposed approach.展开更多
Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy b...Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.展开更多
A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementati...A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementation, the decoupling compensator is reduced to the proportion integration(PI) decoupler with the frequency domain analysis, where the decoupling error in collusion of uncertainties and disturbances can be estimated by the proposed MESO and then compensated. To decrease the sensitivity of the dynamic error for the decoupling control and fulfill various requirements of constraints, such as safety operation, energy conservation, emission reduction, etc., the plant is transmitted through a scheduled steady state region which is achieved from the optimized reference governor in advance. Simulation results show that the proposed control strategy can well suppress various disturbances including a decoupling error, and multi-objective optimization can meet multiple requirements with the premise of safety production.展开更多
The capability to perform fast load-following has been an important issue in the power industry. An output tracking control system of a boiler-turbine unit is developed. The system is composed of stable inversion and ...The capability to perform fast load-following has been an important issue in the power industry. An output tracking control system of a boiler-turbine unit is developed. The system is composed of stable inversion and feedback controller. The stable inversion is implemented as a feedforward controller to improve the load-following capability, and the feedback controller is utilized to guarantee the stability and robustness of the whole system. Loop-shaping H∞ method is used to design the feedback controller and the final controller is reduced to a multivariable PI form. The output tracking control system takes account of the multivariable, nonlinear and coupling behavior of boiler-turbine system, and the simulation tests show that the control system works well and can be widely applied.展开更多
In this paper, the problem of designing a controller for a highly coupled constrained nonlinear boiler- turbine system is addressed with a predictive controller. First, a nonlinear predictive control is implemented by...In this paper, the problem of designing a controller for a highly coupled constrained nonlinear boiler- turbine system is addressed with a predictive controller. First, a nonlinear predictive control is implemented by genetic algorithm. Second, to guarantee fast output stabilization, an H-infinity fuzzy state-feedback tracking control is applied with a designed switching principle. The success of such a control structure is based on taking advantage of the optimal input sequence derived from the nonlinear predictive control based on artificial intelligent while ensuring a fast decay of the steady state error. Simulation results of the proposed design are given to illustrate its effectiveness and compared to other control schemes.展开更多
A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximate...A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximated by its Taylor series expansion with a certain order,the magnitude saturation constraints on the inputs satisfied by increasing the predictive time,and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor.Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances.Comparison of the NMPC scheme with the generic model control(GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level,fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range.展开更多
A method of measuring the interactions in a multivariable control sys-tem(MVCS)in time domain is defined in this paper.An intelligent decoupling com-pensator is designed in terms of the concept of fuzzy control,so tha...A method of measuring the interactions in a multivariable control sys-tem(MVCS)in time domain is defined in this paper.An intelligent decoupling com-pensator is designed in terms of the concept of fuzzy control,so that the auto-tuningof controllers’ parameters in a 2×2 MVCS can be turned into that of two independentsingle-loop control systems(SLCS).The method presented in the paper has success-fully been used in a simulation experiment on the automatic tuning of a coordinatedcontrol system(CCS)in the drum-boiler turbogenerating unit(DBTU)and the simu-lation results axe satisfactory.展开更多
An intelligent coordinated control strategy has been proposed and successfully applied to a 300MW boiler-turbine unit i. e. Unit 1 of Yuanbaoshan power plant in China. Load following operation of coal-fired boiler-tur...An intelligent coordinated control strategy has been proposed and successfully applied to a 300MW boiler-turbine unit i. e. Unit 1 of Yuanbaoshan power plant in China. Load following operation of coal-fired boiler-turbine unit in the power plant leads to changes in operating points which result in nonlinear variations of the plant variables and parameters. For the variation of operating condition and slowly varying dynamics, an intelligent control scheme has been developed by combining fuzzy self-tuning with adaptive control and auto-tuning techniques. As there exist strong couplings between control loops of main steam pressure and power output in the unit, a new design for static decoupler aimed at decoupling for setpoints and unmeasured pulverized coal disturbance of the system at the same time is presented. Satisfactory industrial application results show that such a control system has enhanced adaptability and robustness to the complex process, and better control performance and high economic benefit have been obtained.展开更多
基金The National Natural Science Foundation of China(No.51936003).
文摘To improve the control performance of nonlinear ultra-supercritical(USC)thermal power units,an improved min-max fuzzy model predictive tracking control(FMPTC)strategy is proposed.First,a T-S fuzzy model is established to approximate the dynamics of the nonlinear boiler-turbine system.Then,based on an extended fuzzy model containing state variables and output variables,a min-max FMPTC is derived for output regulation while ensuring the closed-loop system stability and the inputs in their given constraints.For greater controller design freedom,the developed controller adopts a new state-and output-based objective function.In addition,the observer estimation error is regarded as a bounded disturbance,ensuring the stability of the entire closed-loop control system.Simulation results on a 1000 MW USC boiler-turbine model illustrate the effectiveness of the proposed approach.
文摘Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.
基金The National Natural Science Foundation of China(No.51576041,51506029)
文摘A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementation, the decoupling compensator is reduced to the proportion integration(PI) decoupler with the frequency domain analysis, where the decoupling error in collusion of uncertainties and disturbances can be estimated by the proposed MESO and then compensated. To decrease the sensitivity of the dynamic error for the decoupling control and fulfill various requirements of constraints, such as safety operation, energy conservation, emission reduction, etc., the plant is transmitted through a scheduled steady state region which is achieved from the optimized reference governor in advance. Simulation results show that the proposed control strategy can well suppress various disturbances including a decoupling error, and multi-objective optimization can meet multiple requirements with the premise of safety production.
文摘The capability to perform fast load-following has been an important issue in the power industry. An output tracking control system of a boiler-turbine unit is developed. The system is composed of stable inversion and feedback controller. The stable inversion is implemented as a feedforward controller to improve the load-following capability, and the feedback controller is utilized to guarantee the stability and robustness of the whole system. Loop-shaping H∞ method is used to design the feedback controller and the final controller is reduced to a multivariable PI form. The output tracking control system takes account of the multivariable, nonlinear and coupling behavior of boiler-turbine system, and the simulation tests show that the control system works well and can be widely applied.
基金supported by the Chinese Scholarship Council, the Project of Chinese Ministry of Education (No. 108060)the Doctoral Fund of Ministry of Education of China (No. 20090092110051)the National Natural Science Foundation of China (Nos. 51036002, 51076027)
文摘In this paper, the problem of designing a controller for a highly coupled constrained nonlinear boiler- turbine system is addressed with a predictive controller. First, a nonlinear predictive control is implemented by genetic algorithm. Second, to guarantee fast output stabilization, an H-infinity fuzzy state-feedback tracking control is applied with a designed switching principle. The success of such a control structure is based on taking advantage of the optimal input sequence derived from the nonlinear predictive control based on artificial intelligent while ensuring a fast decay of the steady state error. Simulation results of the proposed design are given to illustrate its effectiveness and compared to other control schemes.
基金the Natural Science Foundation of China (No.50636010)
文摘A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximated by its Taylor series expansion with a certain order,the magnitude saturation constraints on the inputs satisfied by increasing the predictive time,and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor.Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances.Comparison of the NMPC scheme with the generic model control(GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level,fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range.
文摘A method of measuring the interactions in a multivariable control sys-tem(MVCS)in time domain is defined in this paper.An intelligent decoupling com-pensator is designed in terms of the concept of fuzzy control,so that the auto-tuningof controllers’ parameters in a 2×2 MVCS can be turned into that of two independentsingle-loop control systems(SLCS).The method presented in the paper has success-fully been used in a simulation experiment on the automatic tuning of a coordinatedcontrol system(CCS)in the drum-boiler turbogenerating unit(DBTU)and the simu-lation results axe satisfactory.
基金This project was supported by the National Nature Science Foundation of China( 60074004).
文摘An intelligent coordinated control strategy has been proposed and successfully applied to a 300MW boiler-turbine unit i. e. Unit 1 of Yuanbaoshan power plant in China. Load following operation of coal-fired boiler-turbine unit in the power plant leads to changes in operating points which result in nonlinear variations of the plant variables and parameters. For the variation of operating condition and slowly varying dynamics, an intelligent control scheme has been developed by combining fuzzy self-tuning with adaptive control and auto-tuning techniques. As there exist strong couplings between control loops of main steam pressure and power output in the unit, a new design for static decoupler aimed at decoupling for setpoints and unmeasured pulverized coal disturbance of the system at the same time is presented. Satisfactory industrial application results show that such a control system has enhanced adaptability and robustness to the complex process, and better control performance and high economic benefit have been obtained.