期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Experimental investigation on boiling heat transfer and pressure drop of R245fa in a horizontal micro-fin tube 被引量:3
1
作者 WANG Zhi-qi HE Ni +1 位作者 XIA Xiao-xia LIU Li-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3200-3212,共13页
An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed.The results show that in terms of flow boiling heat transfer characte... An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed.The results show that in terms of flow boiling heat transfer characteristics,boiling heat transfer coefficient(HTC)increases with mass velocity of R245fa,while it decreases with the increment of saturation temperature and heat flux.With the increase of vapor quality,HTC has a maximum and the corresponding vapor quality is about 0.4,which varies with the operating conditions.When vapor quality is larger than the transition point,HTC can be promoted more remarkably at higher mass velocity or lower saturation temperature.Among the four selected correlations,KANDLIKAR correlation matches with 91.6%of experimental data within the deviation range of±25%,and the absolute mean deviation is 11.2%.Also,in terms of frictional pressure drop characteristics of flow boiling,the results of this study show that frictional pressure drop increases with mass velocity and heat flux of R245fa,while it decreases with the increment of saturation temperature.MULLER-STEINHAGEN-HECK correlation shows the best prediction accuracy for frictional pressure drop among the four widely used correlations.It covers 84.1%of experimental data within the deviation range of±20%,and the absolute mean deviation is 10.1%. 展开更多
关键词 boiling heat transfer frictional pressure drop prediction correlations micro-fin tube R245fa fluid
下载PDF
Influence of nanoparticle concentrations on flow boiling heat transfer coefficients of Al_2O_3/R141b in micro heat exchanger by direct metal laser sintering 被引量:4
2
作者 Jianyang Zhou Xiaoping Luo +4 位作者 Cong Deng Mingyu Xie Lin Zhang Di Wu Feng Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1714-1726,共13页
Al2O3/R141b + Span-80 nanorefrigerant for 0.05 wt.% to 0.4 wt.% is prepared by ultrasonic vibration to investigate the influence of nanoparticle concentrations on flow boiling heat transfer of Al2O3/R141b + Span-80... Al2O3/R141b + Span-80 nanorefrigerant for 0.05 wt.% to 0.4 wt.% is prepared by ultrasonic vibration to investigate the influence of nanoparticle concentrations on flow boiling heat transfer of Al2O3/R141b + Span-80 in micro heat exchanger by direct metal laser sintering. Experimental results show that nanoparticle concentrations have significantly impact on heat transfer coefficients by homogeneity test of variances according to mathematical statistics. The heat transfer performance of Al2O3/R141b + Span-80 nanorefrigerant is enhanced after adding nanoparticles in the pure refrigerant R141b. The heat transfer coefficients of 0.05 wt.%, 0.1 wt.%, 0.2 wt.%, 0.3 wt.% and 0.4 wt.% Al2O3/R141 b + Span-80 nanorefrigerant respectively increase by 55.0% 72.0%, 53.0% 42.3% and 39.9% compared with the pure refrigerant R141b. The particle fluxes from viscosity gradient, non-uniform shear rate and Brownian motion cause particles to migrate in fluid especially in the process of flow boiling. This migration motion enhances heat transfer between nanoparticles and fluid. Therefore, the heat transfer performance of nanofluid is enhanced. It is important to note that the heat transfer coefficients nonlinearly increase with nanoparticle concentrations increasing. The heat transfer coefficients reach its maximum value at the mass concentration of 0.1% and then it decreases slightly. There exists an optimal mass concentration corresponding to the best heat transfer enhancement. The reason for the above phenomenon is attributed to nanoparticles deposition on the minichannel wall by Scanning Electron Microscopy observation. The channel surface wettability increases during the flow boiling experiment in the mass concentration range from 0.2 wt.% to 0.4 wt.%. The channel surface with wettability increasing needs more energy to produce a bubble. Therefore, the heat transfer coefficients decrease with nanopartide concentrations in the range from 0.2 wt.% to 0.4 wt.%. In addition, a new correlation has been proposed by fitting the experimental data considering the influence of mass concentrations on the heat trans- fer performance. The new correlation can effectively predict the heat transfer coefficient. 展开更多
关键词 Nanoparticle Concentration Minichannel Sintering Flow boiling heat transfer coefficient
下载PDF
Boiling Heat Transfer in an Acoustic Cavitation Field 被引量:1
3
作者 周定伟 刘登瀛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第5期625-629,共5页
An experimental study has been carried out investigatesystematically the effects of acoustic cavi- tation parameters andfluid subcooling on boiling of acetone around a horizontal circulartube. The experimental results... An experimental study has been carried out investigatesystematically the effects of acoustic cavi- tation parameters andfluid subcooling on boiling of acetone around a horizontal circulartube. The experimental results show that acoustic cavitation enhancedremarkably the boiling heat transfer and decreased the incipientboiling superheat and that cavitation bubbles effect on boiling heattransfer reduced with cavitation distance. For boiling curves in aform of h-q', elevated cavitation distance shift nucleate boilingcurves to the right of the cor- responding ordinary pool boilingcurve. The associated mechanism of heat transfer enhancement isanalyzed with the consideration of cavitation bubble influence onvapor embryo. 展开更多
关键词 acoustic cavitation boiling heat transfer HYSTERESIS
下载PDF
Boiling Heat Transfer in Circulating Fluidized Beds 被引量:1
4
作者 张利斌 李修伦 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第3期235-241,共7页
A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. T... A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data. 展开更多
关键词 boiling heat transfer circulating fluidized bed three-phase flow
下载PDF
Numerical Simulation on Subcooled Boiling Heat Transfer Characteristics of Water-Cooled W/Cu Divertors 被引量:2
5
作者 韩乐 常海萍 +1 位作者 张镜洋 许铁军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第4期347-352,共6页
In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters i... In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial.In this paper,subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic(CFD).The boiling heat transfer was simulated based on the Euler homogeneous phase model,and local differences of liquid physical properties were considered under one-sided high heating conditions.The calculated wall temperature was in good agreement with experimental results,with the maximum error of 5%only.On this basis,the void fraction distribution,flow field and heat transfer coefficient(HTC)distribution were obtained.The effects of heat flux,inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated.These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor. 展开更多
关键词 water-cooled W/Cu divertor subcooled boiling heat transfer characteristic numerical calculation
下载PDF
Boiling Heat Transfer Enhancement in a Vertical Annulus by Introduction of Air in Liquid Flow
6
作者 王军 苗君 +1 位作者 刘芸 沈自求 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期633-638,共6页
In this paper, boiling heat transfer in a vertical annulus with inner side heated with and without air introduction is experimentally studied. Results show that boiling heat transfer is significantly enhanced by the i... In this paper, boiling heat transfer in a vertical annulus with inner side heated with and without air introduction is experimentally studied. Results show that boiling heat transfer is significantly enhanced by the introduction of air. When air is introduced into the liquid with a temperature below boiling point, the enhancement of heat transfer is also detected. It is concluded from the study that the heat transfer enhanced by introduction of inert gas is due to the liquid vaporization at the gas-liquid interface near the wall, which removes a large amount of latent heat and lowers the interfacial temperature considerably. Thus the gas-liquid interface acts as a 'heat sink'and the heat transfer is augmented significantly. 展开更多
关键词 boiling heat transfer vertical annulus tube air introduction interfacialvaporization heat sink
下载PDF
Experimental and Numerical Analysis of the Influence ofMicrochannel Size and Structure on Boiling Heat Transfer
7
作者 Ningbo Guo Xianming Gao +3 位作者 Duanling Li Jixing Zhang Penghui Yin Mengyi Hua 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3061-3082,共22页
Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and ... Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80μm and a depth of 40,60,and 80μm were compared during the boiling process,and the factors influencing bubble generation were studied.A visual test bench was built,and test substrates of different sizes were prepared using a micro-nano laser.During the test,the behavior characteristics of the bubbles on the boiling surface and the temperature change of the heated wall were collected with a high-speed camera and a temperature sensor.It was found that the microchannel with a depth of 80μm had the largest heat transfer coefficient and shortest bubble growth period,the rectangular channel had a larger peak heat transfer coefficient and a lower frequency of bubble occurrence,while the V-shaped channel had the shortest growth period,i.e.,the highest frequency of bubble occurrence,but its heat transfer coefficient was smaller than that of the rectangular channel. 展开更多
关键词 MICROCHANNEL boiling heat transfer BUBBLE numerical simulation visual experiment
下载PDF
Neural Network Model for Boiling Heat Transfer of R22 and Its Alternative Refrigerants inside Horizontal Smooth Tubes
8
作者 王微涓 张春路 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第1期76-79,共4页
Accurate prediction of refrigerant boiling heat transfer coefficients is important for the design of evaporators. The generalized correlations have different forms, and could not provide satisfactory results for R22 a... Accurate prediction of refrigerant boiling heat transfer coefficients is important for the design of evaporators. The generalized correlations have different forms, and could not provide satisfactory results for R22 and its alternative refrigerants R134a, R407C and R410A. This study proposes to use artificial neural network (ANNs) as a generalized correlation model, selects the input parameters of ANNs on the basis of the dimensionless parameter groups of existing correlations, and correlates the in-tube boiling heat transfer coefficients of the above four refrigerants. The results show that the ANNs model with the input and output based on the Liu-Winterton correlation has the best result. The root-mean-square deviations in training and test are 15.5% and 20.2% respectively, and approximately 85% of the deviations are within ±20%, which is much better than that of the existing generalized correlations. 展开更多
关键词 REFRIGERANT smooth tube boiling heat transfer CORRELATION neural network
下载PDF
Application of Superhydrophobic Surface on Boiling Heat Transfer Characteristics of Nanofluids
9
作者 Cong Qi Yuxing Wang +2 位作者 Zi Ding Jianglin Tu Mengxin Zhu 《Energy Engineering》 EI 2021年第4期825-852,共28页
Boiling heat transfer is a mode using the phase change of working medium to strengthen the heat exchange due to its good heat exchange capability,and it is widely used in heat exchange engineering.Nanofluids have been... Boiling heat transfer is a mode using the phase change of working medium to strengthen the heat exchange due to its good heat exchange capability,and it is widely used in heat exchange engineering.Nanofluids have been used in the direction of enhanced heat transfer for their superior thermophysical property.The wetting,spreading and ripple phenomena of superhydrophobic surfaces widely exist in nature and daily life.It has great application value for engineering technology.In this article,the boiling heat exchange characteristics of nanofluids on superhydrophobic surface are numerically studied.It was found that with the increase of superheating degree,the steam volume ratio of unmodified heated surface increases to saturation,while the steam volume and evaporation ratio of modified superhydrophobic surface increase firstly and then decrease.At the same time,bubbles are generated and accumulated more fully on superhydrophobic surface.It was also found that nanofluids with low viscosity are more affected by superhydrophobic surface characteristics,and the increase is more significant with high superheating degree,and the superhydrophobic surface is beneficial to enhancing boiling heat exchange.Compared with the simulation results,it could be concluded that the boiling heat exchange performance of CuO-water nano-fluids on the modified superhydrophobic surface is better than that of CuO-ethylene glycol nanofluids under high superheating degree. 展开更多
关键词 Nanofluids superhydrophobic surface pool boiling heat transfer numerical simulation
下载PDF
Tabooed Universal Characteristic Length and Misled Boiling Heat Transfer Research
10
作者 Irakli G. Shekriladze 《Journal of Physical Science and Application》 2015年第5期334-344,共11页
The paper presents the next step within multiyear fruitless efforts of the author to overcome the absurd situation in boiling heat transfer research. The focus is made on the problem of the characteristic length of th... The paper presents the next step within multiyear fruitless efforts of the author to overcome the absurd situation in boiling heat transfer research. The focus is made on the problem of the characteristic length of the process most clearly exhibiting the consequences of half a century ignoring the basic MTD (Model "theater of director"), the UC (Universal correlation) and some other boiling fundamentals. Echoing control of boiling heat transfer by nucleation, the MTD-UC identifies universal characteristic length, the AER (Average effective radius) of nucleation sites, equally workable at the macro- and microscale. Inefficiency of the generally accepted, so called MTA (theater of actors) is particularly pronounced just in the confusion with the characteristic length. Traditional and potential candidates, departure diameter of vapor bubble and transverse internal size of the channel hardly can be adjusted to independence of developed boiling HTC on mass acceleration, subcooling, liquid convection and the heating surface geometry. At the same time, even such a problem has not prevented many authors to develop tens or even hundreds of helpless MTA-based correlations. The ignoring the MTD-UC-AER has also led to the incompleteness of the standard boiling heat transfer experiment, which is usually done without studying nucleation sites (there are available only very few comprehensive experimental works including the data on the AER). The only exception was made for the problem of boiling heat transfer enhancement: over the past decades enhanced boiling surfaces were developed in direct accordance with the principle defined by the MTD-UC (just through the AER). Another thing is that the basic role of the MTD-UC-AER in substantial progress of the relevant R&D activities passed over in silence in the corresponding publications. Enviable unity and coherence of heat transfer community in preventing real scientific debate on the problem is also remarked. 展开更多
关键词 NUCLEATION effective radius characteristic length boiling heat transfer.
下载PDF
Numerical study on two-phase boiling heat transfer performance of interrupted microchannel heat sinks 被引量:9
11
作者 ZHOU JianHong CHEN XueMei LI Qiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第3期679-692,共14页
The conventional straight microchannel heat sinks have been reported to inadequately remove the increasing power density of electronics.In recent years,an effective heat transfer enhancement method,flow disruptions ha... The conventional straight microchannel heat sinks have been reported to inadequately remove the increasing power density of electronics.In recent years,an effective heat transfer enhancement method,flow disruptions have attracted the attention of researchers,where interrupted structures are arranged in the microchannel to enhance flow mixing and heat transfer.However,previous numerical studies of interrupted microchannel heat sinks(I MCHS)mainly focus on single-phase flow condition,and the characteristics of the boiling heat transfer of I MCHS in two-phase flow condition have been rarely explored.Thus,the flow and heat transfer characteristics of two I MCHS based on rectangular microchannel heat sink(R MCHS)are investigated by modeling both single-phase and two-phase flow conditions.These two interrupts consist of a combination of cavities and ribs,namely elliptical cavities and elliptical side ribs(EC-ESR),and elliptical cavities and elliptical central ribs(EC-ECR).The results show that for single-phase flow condition,the maximum Nusselt number is increased by 187%in the EC-ESR design and150%in the EC-ECR design compared with the R MCHS.For subcooled boiling(i.e.,two-phase flow)condition,the EC-ECR design is a promising structure to enhance boiling heat transfer with 6.7 K reduction of average wall temperature and 29%increment of local heat transfer coefficient when compared with those of R MCHS.However,the local heat transfer coefficient in the EC-ESR design is decreased by 22%compared with the R MCHS due to the formation of a rare flow pattern(i.e.,inverted annular flow with vapor film separation)in the microchannel.This flow pattern can induce departure from nucleate boiling(DNB),thereby deteriorating the heat transfer on the channel walls. 展开更多
关键词 microchannel heat sink cavities and ribs thermal performance flow pattern boiling heat transfer flow disruptions
原文传递
Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method 被引量:8
12
作者 Tao JIN Jian-ping HONG +2 位作者 Hao ZHENG Ke TANG Zhi-hua GAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第5期691-696,共6页
Inverse heat conduction method (IHCM) is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results. This paper focuses on its application in cryogenic boiling heat t... Inverse heat conduction method (IHCM) is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results. This paper focuses on its application in cryogenic boiling heat transfer. Experiments were conducted on the heat transfer of a stainless steel block in a liquid nitrogen bath, with the assumption of a 1D conduction condition to realize fast acquisition of the temperature of the test points inside the block. With the inverse-heat conduction theory and the explicit finite difference model, a solving program was developed to calculate the heat flux and the boiling heat transfer coefficient of a stainless steel block in liquid nitrogen bath based on the temperature acquisition data. Considering the oscillating data and some unsmooth transition points in the inverse-heat-conduction calculation result of the heat-transfer coefficient, a two-step data-fitting procedure was proposed to obtain the expression for the boiling heat transfer coefficients. The coefficient was then verified for accuracy by a comparison between the simulation results using this expression and the verifying experimental results of a stainless steel block. The maximum error with a revised segment fitting is around 6%, which verifies the feasibility of using IHCM to measure the boiling heat transfer coefficient in liquid nitrogen bath. 展开更多
关键词 Inverse heat conduction method (IHCM) Liquid nitrogen bath boiling heat transfer coefficient
原文传递
Heat Transfer in Nucleate Pool Boiling of Binary and Ternary Refrigerant Mixtures 被引量:2
13
作者 赵耀华 刁彦华 +1 位作者 鹤田隆治 西川日出男 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第3期351-356,共6页
Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa.... Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa. Compared to pure components, both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased. Experimental data were compared with some empirical and semi-empirical correlations available in literature. For binary mixture, the accuracy of the correlations varied considerably with mixtures and the heat flux. Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome. For ternary mixture, the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points, and their concentration difference had important effects on boiling heat transfer coefficients. 展开更多
关键词 pool boiling heat transfer nucleate pool boiling HFC-134A HFC-32 HFC-125
下载PDF
Enhancement in boiling heat transfer performance using reduced graphene oxide coating with controllable components and porous structures 被引量:1
14
作者 XU ZhiMing WANG XiaoLiang +5 位作者 JIANG HongPeng ZHANG ZhiRong SHAN DeBin GUO Bin QIU YunFeng XU Jie 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第7期2080-2092,共13页
Enhancement in boiling heat transfer performance is significant for addressing thermal management bottlenecks of advanced electronic systems.Reduced graphene oxides(rGO)are regarded as promising candidates for thermal... Enhancement in boiling heat transfer performance is significant for addressing thermal management bottlenecks of advanced electronic systems.Reduced graphene oxides(rGO)are regarded as promising candidates for thermal management due to their excellent thermal properties,chemical stability and adjustable wettability.In this study,rGO coatings with micron pores and controllable oxygen contents are prepared on Al substrate via cathodic electrophoretic deposition and subsequent thermal annealing,leading to enhanced pool boiling performance.The heat transfer coefficient for Al/rGO450is 37.2 kW m-2K-1,which is increased by 112.6%compared with bare Al,also outperformed previously reported Al based substrates.It is assumed that the hydrophilic and aerophobic r GO coatings effectively promote the liquid infiltration and bubble departure during pool boiling process.Importantly,repeatability tests indicate the durable stability of vertically oriented rGO nanosheets.Reverse nonequilibrium molecular dynamics simulation indicates that the interfacial transmission coefficients of Al/rGO increase after thermal annealing,indicative of the enhanced heat transfer performance of heterogeneous interface.Our study opens a new avenue for endowing metal substrates with high pool boiling performance using porous carbon coating nanoengineering strategy with controllable morphology and components. 展开更多
关键词 GRAPHENE cathodic electrophoretic deposition boiling heat transfer thermal reduction interfacial nanoengineering
原文传递
Experimental Study on Convective Boiling Heat Transfer in Vertical Narrow-Gap Annular Tube
15
作者 Li Bin He Anding Wang Yueshe Zhou Fangde The National Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China 《Journal of Thermal Science》 SCIE EI CAS CSCD 2001年第2期148-152,共5页
Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of l, 1.5 and 2.5 mm. and also the visualizat... Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of l, 1.5 and 2.5 mm. and also the visualization test are carried out to get two-phase flow regime. The data show that the Nusselt numbers for the narrow-gap are higher than those predicted by traditional large channel correlation and boiling heat transfer is enhanced. Based on the data obtained in this investigation, correlations for single-phase, forced convection and flow boiling in annular tube of different gap size has been developed. 展开更多
关键词 annular tube single-phase forced convection boiling heat transfer narrow gap.
原文传递
Investigation on Active Thermal Control Method with Pool Boiling Heat Transfer at Low Pressure
16
作者 SUN Chuang GUO Dong +1 位作者 WANG Zhengyu SUN Fengxian 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第3期277-284,共8页
In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The ... In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m^2 and 20 kW/m^2. The chosen material of the heat surface was alu- minium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10℃ for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the borizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm. 展开更多
关键词 Pool boiling heat transfer WATER Low Pressure Low-load heat Flux Experiment Measurement
原文传递
Critical Heat Flux of Boiling Heat Transfer in aModerate Narrow Space
17
作者 Yao-HuaZhan TakashiMasuoka 《Journal of Thermal Science》 SCIE EI CAS CSCD 1998年第2期104-110,共7页
Boiling heat transfer process is analyzed in a moderate narrow space consisted of two horizontal plates.The main difference between this process and the conventional unconfined pool boilillg is the liquidsupply mechan... Boiling heat transfer process is analyzed in a moderate narrow space consisted of two horizontal plates.The main difference between this process and the conventional unconfined pool boilillg is the liquidsupply mechanism which is absolutely prevented by the growth of coalescence bubble along with theheated surface in the narrow space. As a result, the macrolayer becomes thinner due to the evaportion of the individual bubbles within the macrolayer during the period of bubble coalescence, with orwithout dryout that depends on both the gap size of narrow space and the size of heated surface. Fora specified size of the heated surface, the initial thickness of the liquid layer has a critical value whichapproaches a constant while the space height is larger than a critical value. The individual bubblebehaviors and tlie heat transfer can be considered as the same as that in the unconfined pool boiling, ifthe space gap is large. However, the individual bubbles do not generate in the last period of the bubblecoalescence and a lower maximum heat fiux will be resulted if the space gap is reduced. In such a case,the macrolayer is dryout. 展开更多
关键词 boiling heat transfer critical heat flux coalescence bubble
原文传递
Visualization of Boiling Heat Transfer on Copper Surface with Different Wettability
18
作者 LIU Dong LI Yunheng HU Anjie 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期1903-1913,共11页
In this work, a pool boiling visualization experiment platform was built to study the influence of wettability on the nucleate boiling heat transfer. The copper surface was prepared by chemical etching method, and thr... In this work, a pool boiling visualization experiment platform was built to study the influence of wettability on the nucleate boiling heat transfer. The copper surface was prepared by chemical etching method, and three types of copper surfaces(hydrophilic, hydrophobic, and smooth) were obtained. The boiling heat transfer characteristics of these three surfaces were discussed based on the obtained heat transfer curves and the heat transfer coefficient(HTC) curves. It was found that the HTC still increases when the boiling heat transfer closes the critical heat flux(CHF). To better evaluate the boiling heat transfer efficiency, the concept of heat flux growth rate per unit superheat is introduced. The dynamic behaviors of single and multiple bubbles were also recorded to study the mechanism of the boiling heat transfer. The bubble behavior characteristics show good consistent with the proposed heat flux growth rate. By comparing the heat transfer curves and the bubble dynamic behavior, the following characters of boiling heat exchange can be found: At low heat flux, the heat exchange is dominated by the bubble coverage on the surface, and the hydrophobic surface has better boiling heat transfer efficiency than the hydrophilic surface. As the heat flux increases, the vapor channel connecting a big bubble and the wall surface plays an important role in enhancing the heat transfer. The polymerization of bubbles on the hydrophobic surface forms bubble films and breaks the vapor channel, leading to a significantly smaller HTC and a lower CHF than that of the hydrophilic surface. The HTC of hydrophilic surface in this work can reach up to 54.85 kW/(m^(2)·K), which is 2.3 times the hydrophobic surface. 展开更多
关键词 boiling heat transfer boiling curve bubble dynamic
原文传递
Accurate prediction of the critical heat flux for pool boiling on the heater substrate
19
作者 Fengxun Hai Wei Zhu +1 位作者 Xiaoyi Yang Yuan Deng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期476-482,共7页
While the influence of liquid qualities,surface morphology,and operating circumstances on critical heat flux(CHF)in pool boiling has been extensively studied,the effect of the heater substrate has not.Based on the for... While the influence of liquid qualities,surface morphology,and operating circumstances on critical heat flux(CHF)in pool boiling has been extensively studied,the effect of the heater substrate has not.Based on the force balance analysis,a theoretical model has been developed to accurately predict the CHF in pool boiling on a heater substrate.An analytical expression for the CHF of a heater substrate is obtained in terms of the surface thermophysical property.It is indicated that the ratio of thermal conductivity(k)to the product of density(ρ)and specific heat(cp)is an essential substrate property that influences the CHF.By modifying the well-known force-balance-based CHF model(Kandlikar model),the thermal characteristics of the substrate are taken into consideration.The bias of predicted CHF values are within 5%compared with the experimental results. 展开更多
关键词 boiling heat transfer kandlikar model critical heat flux heater substrate
下载PDF
FEM simulation and experimental verification of temperature field and phase transformation in deep cryogenic treatment 被引量:4
20
作者 黎军顽 汤磊磊 +1 位作者 李绍宏 吴晓春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2421-2430,共10页
Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was esta... Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure. 展开更多
关键词 deep cryogenic treatment boiling heat transfer coefficient finite element method phase transformation cold work tool steel
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部