From results obtained in the rheological characterization of a 4% dispersion of flamboyant gum with the HaakeRT20 viscometer, for different conditions of pH = 3.0 and 9.0, temperature 5°C, 25°C and 45°C...From results obtained in the rheological characterization of a 4% dispersion of flamboyant gum with the HaakeRT20 viscometer, for different conditions of pH = 3.0 and 9.0, temperature 5°C, 25°C and 45°C, the data of the rheological behavior of the gum dispersions were fitted to the power law model. To understand and predict the behavior of this gum, a model of Lattice Boltzmann D2Q9 was developed for the behavior, in addition to simulations for the conditions handled in the experiments performed with the HaakeRT20 viscometer.展开更多
In this paper, the power-law model for a non-Newtonian (pseudo-plastic) flow is investigated numerically. The D2Q9 model of Lattice Boltzmann method is used to simulate the micro-channel flow with expansion geometries...In this paper, the power-law model for a non-Newtonian (pseudo-plastic) flow is investigated numerically. The D2Q9 model of Lattice Boltzmann method is used to simulate the micro-channel flow with expansion geometries. This geometry is made by two squared or trapezoid cavities at the bottom and top of the channel which can simulate an artery with local expansion. The cavities are displaced along the channel and the effects of the displacements are investigated for inline structures and staggered ones (anti-symmetric expansion). The method is validated by a Poiseuille flow of the power-law fluid in a duct. Validation is performed for two cases: The Newtonian fluid and the shear thinning fluid (pseudo-plastic) with n = 0.5. The results are discussed in four parts: 1) Pressure drop;It is shown that the pressure drop along the channel for inline cavities is much more than the pressure drop along the staggered structures. 2) Velocity profiles;the velocity profiles are sketched at the centerline of the cavities. The effects of pseudo-plasticity are discussed. 3) Shear stress distribution;the shear stress is computed and shown in the domain. The Newtonian and non-Newto- nian fluids are discussed and the effect of the power n on shear stress is argued. 4) Generated vortices in the cavities are also presented. The shape of the vortices is depicted for various cases. The results for these cases are talked over and it is found that the vortices will be removed for flows with n smaller than 0.5.展开更多
In this study, we found regular behavior, from a statistical point of view, in the intensities of rotational spectra for several organic and inorganic molecules at room temperature. Non-linear molecules, for which a c...In this study, we found regular behavior, from a statistical point of view, in the intensities of rotational spectra for several organic and inorganic molecules at room temperature. Non-linear molecules, for which a common intensity behavior was derived, were especially interesting. We provided theoretical support for the obtained results based on the Boltzmann distribution. Boltzmann power laws were used to reproduce the statistical behavior of the intensities from the spectra of linear and non-linear molecules. We only used statistical arguments and no specific details of any molecule were used. Therefore, these results are applicable to a large class of atoms and molecules and the model is valid when considering similar conditions to those used in this study.展开更多
文摘From results obtained in the rheological characterization of a 4% dispersion of flamboyant gum with the HaakeRT20 viscometer, for different conditions of pH = 3.0 and 9.0, temperature 5°C, 25°C and 45°C, the data of the rheological behavior of the gum dispersions were fitted to the power law model. To understand and predict the behavior of this gum, a model of Lattice Boltzmann D2Q9 was developed for the behavior, in addition to simulations for the conditions handled in the experiments performed with the HaakeRT20 viscometer.
文摘In this paper, the power-law model for a non-Newtonian (pseudo-plastic) flow is investigated numerically. The D2Q9 model of Lattice Boltzmann method is used to simulate the micro-channel flow with expansion geometries. This geometry is made by two squared or trapezoid cavities at the bottom and top of the channel which can simulate an artery with local expansion. The cavities are displaced along the channel and the effects of the displacements are investigated for inline structures and staggered ones (anti-symmetric expansion). The method is validated by a Poiseuille flow of the power-law fluid in a duct. Validation is performed for two cases: The Newtonian fluid and the shear thinning fluid (pseudo-plastic) with n = 0.5. The results are discussed in four parts: 1) Pressure drop;It is shown that the pressure drop along the channel for inline cavities is much more than the pressure drop along the staggered structures. 2) Velocity profiles;the velocity profiles are sketched at the centerline of the cavities. The effects of pseudo-plasticity are discussed. 3) Shear stress distribution;the shear stress is computed and shown in the domain. The Newtonian and non-Newto- nian fluids are discussed and the effect of the power n on shear stress is argued. 4) Generated vortices in the cavities are also presented. The shape of the vortices is depicted for various cases. The results for these cases are talked over and it is found that the vortices will be removed for flows with n smaller than 0.5.
文摘In this study, we found regular behavior, from a statistical point of view, in the intensities of rotational spectra for several organic and inorganic molecules at room temperature. Non-linear molecules, for which a common intensity behavior was derived, were especially interesting. We provided theoretical support for the obtained results based on the Boltzmann distribution. Boltzmann power laws were used to reproduce the statistical behavior of the intensities from the spectra of linear and non-linear molecules. We only used statistical arguments and no specific details of any molecule were used. Therefore, these results are applicable to a large class of atoms and molecules and the model is valid when considering similar conditions to those used in this study.