Some highly designable protein structures have dented on the surface of their native structures, and are not full compactly folded. According to hydrophobic-polar (HP) model the most designable structures are full c...Some highly designable protein structures have dented on the surface of their native structures, and are not full compactly folded. According to hydrophobic-polar (HP) model the most designable structures are full compactly folded. To investigate the designability of the dented structures, we introduce the hydrogen bond energy in the secondary structures by using the secondary-structure-favored HP model proposed by Ou-yang etc. The result shows that the average designability increases with the strength of the hydrogen bond. The designabilities of the structures with same dented shape increase exponentially with the number of secondary structure sites. The dented structures can have the highest designabilities for a certain value of hydrogen bond energy density.展开更多
On the basis of free-electronic bands, the Fermi energy is calculated by summing the band eigenvalues over Brillouin-zones ,and the results may lead to understand the physical basis of the average-bond-energy model in...On the basis of free-electronic bands, the Fermi energy is calculated by summing the band eigenvalues over Brillouin-zones ,and the results may lead to understand the physical basis of the average-bond-energy model in the calculation of valence-band offsets.展开更多
Molecular bond energy is a key parameter for analyzing the properties of chemical activity,stability and flexibility.Calculating bond energy is a challenge due to the cost of first-principles simulations and unsatisfa...Molecular bond energy is a key parameter for analyzing the properties of chemical activity,stability and flexibility.Calculating bond energy is a challenge due to the cost of first-principles simulations and unsatisfactory prediction using empirical formula.Here we show that a neural network(NN)machine-learning method can achieve quick prediction of bond energies of organic molecules.Using atomic species and charge information as descriptors,we trained a NN protocol and applied it to predict the bond energy in a certain chemical bond that agreed with density functional theory calculations.This protocol also provided a way to evaluate the effects of different methods of atomic charge analysis on NN training.Trained to accurately estimate bond energies,this NN protocol provides a cost-effective tool for optimizing chemical reactions,accelerating molecular design,and other important applications.展开更多
Calculation of the bonding energy of a molecular orbital for a series of small molecules has been carried out by using ab initio STO-3G method. The results obtained demonstrate that the concept of the molecular orbita...Calculation of the bonding energy of a molecular orbital for a series of small molecules has been carried out by using ab initio STO-3G method. The results obtained demonstrate that the concept of the molecular orbital bonding energy is applicable for judging whether a molecular orbital is bonding, nonbonding or antibonding besides Mulliken overlap criterion.展开更多
Bond dissociation energy(BDE),which refers to the enthalpy change for the homolysis of a specific covalent bond,is one of the basic thermodynamic properties of molecules.It is very important for understanding chemical...Bond dissociation energy(BDE),which refers to the enthalpy change for the homolysis of a specific covalent bond,is one of the basic thermodynamic properties of molecules.It is very important for understanding chemical reactivities,chemical properties and chemical transformations.Here,a machine learning-based comprehensive BDE prediction model was established based on the iBonD experimental BDE dataset and the calculated BDE dataset by St.John et al.Differential Structural and PhysicOChemical(D-SPOC)descriptors that reflected changes in molecules'structural and physicochemical features in the process of bond homolysis were designed as input features.展开更多
hethesisanalysesthevalenceelectronstructuresof phase Γin Fe Zn transitionallayerof heat galvanized sheet used in cars by applying the Empirical Electron Theory of Solids andMolecules, and calculatesthebond energy o...hethesisanalysesthevalenceelectronstructuresof phase Γin Fe Zn transitionallayerof heat galvanized sheet used in cars by applying the Empirical Electron Theory of Solids andMolecules, and calculatesthebond energy ofthe major bondsand cohesiveenergy ofcrystals,from which we draw theconclusion:sincecrystal has alargercohesiveenergy, it has higherhardness, butsinceitsbondenergyisratherlow ,itiseasytobreak under pressurefrom out side, and thecrackiseasytocome up andspreadin phase Γ.展开更多
On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of ...On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of orbitals, as well as the backflow transformation, is studied. The Slater-Jastrow DMC algorithm gives BDEs of 359.1±0.12 kJ/mol for HB-H, 410.5±0.50 kJ/mol for HOB-OH, 357.8±1.46 kJ/mol for ClB-Cl, and 504.5±0.96 kJ/mol for B-Cl using B3PW91 orbitals and similar BDEs when B3LYP orbitals are used. DMC with backflow corrections (BF-DMC) gives a HB-H BDE of 369.9±0.12 kJ/mol which is close to one of the available experimental value (375.8 kJ/mol). In the case of HOB-OH BDE, the BF-DMC calculation is 446.04-1.84 k J/mol that is closer to the experimental BDE. The BF-DMC BDE for ClB-Cl is 343.2±2.34 kJ/mol and the BF-DMC B-Cl BDE is 523.3±0.33 kJ/mol, which are close to the experimental BDEs, 341.9 and 530.0 kJ/mol, respectively.展开更多
Semiempirical quantum chemical method AM1 was employed to calculate the highest occupied molecular orbital (HOMO) energy levels (E-HOMO) for various types of antioxidants. It was verified that the correlation between ...Semiempirical quantum chemical method AM1 was employed to calculate the highest occupied molecular orbital (HOMO) energy levels (E-HOMO) for various types of antioxidants. It was verified that the correlation between logarithm of free radical scavenging rate constants (1gks) and E-HOMO substantially arises from the correlation between E-HOMO and O-H bond dissociation energies (BDE) of antioxidants. Furthermore, E-HOMO were poorly correlated with the logarithm of relative free radical scavenging rate constants (1gk(3)/k(1)) for various types of antioxidants that possess complex structures (r = 0.5602). So in a broad sense, E-HOMO was not an appropriate parameter to characterize the free radical scavenging activity of antioxidants.展开更多
By using the density functional theory (B3LYP) and four highly accurate complete basis set (CBS-Q, CBS-QB3, CBS-Lq, and CBS-4M)ab initio methods, the X(C, N, O)-NO2 bond dissociation energies (BDEs) for CH3NO2...By using the density functional theory (B3LYP) and four highly accurate complete basis set (CBS-Q, CBS-QB3, CBS-Lq, and CBS-4M)ab initio methods, the X(C, N, O)-NO2 bond dissociation energies (BDEs) for CH3NO2, C2H3NO2, C2H5NO2, HONO2, CH3ONO2, C2H5ONO2, NH2NO2 (CH3)2NNO2 are computed. By comparing the computed BDEs and experimental results, it is found that the B3LYP method is unable to predict satisfactorily the results of bond dissociation energy (BDE); however, all four CBS models are generally able to give reliable predication of the X(C, N, O)-NO2 BDEs for these nitro compounds. Moreover, the CBS-4M calculation is the least computationally demanding among the four CBS methods considered, Therefore, we recommend CBS-4M method as a reliable method of computing the BDEs for this nitro compound system.展开更多
Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies(BDEs) for 15 acids.These compounds are studied by utilizing the hybrid density func...Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies(BDEs) for 15 acids.These compounds are studied by utilizing the hybrid density functional theory(DFT)(B3LYP,B3PW91,B3P86,PBE1PBE) and the complete basis set(CBS-Q) method in conjunction with the 6311G^** basis as DFT methods have been found to have low basis sets sensitivity for small and medium molecules in our previous work.Comparisons between the computational results and the experimental values reveal that CBS-Q method,which can produce reasonable BDEs for some systems in our previous work,seems unable to predict accurate BDEs here.However,the B3P86 calculated results accord very well with the experimental values,within an average absolute error of 2.3 kcal/mol.Thus,B3P86 method is suitable for computing the reliable BDEs of C-COOH bond for carboxylic acid compounds.In addition,the energy gaps between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of studied compounds are estimated,based on which the relative thermal stabilities of the studied acids are also discussed.展开更多
Bond dissociation energies for the removal of nitrogen dioxide group in some nitroalkane energetic materials have been calculated by using the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B...Bond dissociation energies for the removal of nitrogen dioxide group in some nitroalkane energetic materials have been calculated by using the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B3P86 with 6-31g^** and 6-311g^** basis sets. The computed BDEs have been compared with the available experimental results. It is found that the B3P86 method with 6-31g^** and 6-311g^** basis sets can obtain satisfactory bond dissociation energies (BDEs), which are in extraordinary agreement with the experimental data. Considering the smaller mean absolute deviation and maximum difference, the reliable B3P86/6-311g^** method was recommended to compute the BDEs for the removal of nitrogen dioxide group in the nitroalkane energetic materials. Using the method, the BDEs of 8 other nitroalkane energetic materials have been calculated and the maximum difference from experimental value is 1.76 kcal.mo1^-1 (for the BDE of tC4Hg-NOz), which further proves the reliability of B3P86/6-311g^** method. In addition, it is noted that the BDEs of C-NO2 bond change slightly for main chain nitroalkane compounds with the maximum difference of only 3.43 kcal mo1^-1.展开更多
The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing t...The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing the computed energies and experimental results, we find that the B3P86/6-311G** method can give good results of BDE, which has the mean absolute deviation of 1.30kcal/mol. In addition, substituent effects were also taken into account. It is noted that the Hammett constants of substituent groups are related to the BDEs of the N-NO2 bond and the bond dissociation energies of the energetic materials studied decrease when increasing the number of NO2 group.展开更多
The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the ...The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the C--C bond dissociation energy (BDE) by experiments, so using quantum chemistry calculation such as density functional theory (DFT) to study the C--C bond dissociation energy is a very useful means. The impact of acceptor substituents and donor substituents on the C--C bond length distribution was studied.展开更多
Neutral aluminium alkyls are well known to act as ethylene oligomerization and polymerization catalysts and cocatalysts.On the basis of the full optimization of alkylaluminium compounds with Gaussian 98 program packag...Neutral aluminium alkyls are well known to act as ethylene oligomerization and polymerization catalysts and cocatalysts.On the basis of the full optimization of alkylaluminium compounds with Gaussian 98 program package at the B3LYP/6-31G** level,the selected structures and bonding energies were investigated extensively.The geometries and bonding energies of AlR3(R = H,CH3,C2H5,C3H7,C4H9) and Al(C2H5)2R'(R' = C2H5,C3H7,C4H9,C5H11,C6H13) were investigated extensively,and we found that,along with the prolongation of carbon chains the terminal C-C bond is shortened gradually until to a constant value of about 0.1532 nm in C4H9;and the bonding energy almost remains constant.The dative bonding of C2H4 to Al(C2H5)3,whose bonding energy is only 15.30 kJ/mol,is very weak.展开更多
Based on the empirical electron surface model (EESM),the covalent electron density of dangling bonds (CEDDB) was calculated for various crystal planes of gold,and the surface energy was calculated further.Calculat...Based on the empirical electron surface model (EESM),the covalent electron density of dangling bonds (CEDDB) was calculated for various crystal planes of gold,and the surface energy was calculated further.Calculation results show that CEDDB has a great influence on the surface energy of various index surfaces and the anisotropy of the surface.The calculated surface energy is in agreement with experimental and other theoretical values.The calculated surface energy of the close-packed (111) surface has the lowest surface energy,which agrees with the theoretical prediction.Also,it is found that the spatial distribution of covalent bonds has a great influence on the surface energy of various index surfaces.Therefore,CEDDB should be a suitable parameter to describe and quantify the dangling bonds and surface energy of various crystal surfaces.展开更多
Polybrominated diphenyl ethers(PBDEs)are a kind of serious pollutants in the ocean.Biodegradation is considered as an economical and safe way for PBDEs removal and reductive debromination dominates the initial pathway...Polybrominated diphenyl ethers(PBDEs)are a kind of serious pollutants in the ocean.Biodegradation is considered as an economical and safe way for PBDEs removal and reductive debromination dominates the initial pathway of anaerobic degradation.On the basis of experimental study,Octa-BDE 197,Hepta-BDE 183,Hexa-BDE 153,Penta-BDE 99 and Tetra-BDE 47 were selected as the initial degradation objects,and their debromination degradation were studied using density functional theory.The structures were optimized by Gaussian 09 program.Furthermore,the molecular orbitals and charge distribution were analyzed.All C-Br bond dissociation energies at different positions including ortho,meta and para bromine atoms were calculated and the sequence of debromination was obtained.There is a close relationship between molecular structure,charge,molecular orbital and C-Br bond.All PBDEs exhibited similar debromination pathways with preferential removal of meta and para bromines.展开更多
A systematic study on the structure and electronic properties of gold clusters doped each with one copper atom has been performed using the density functional theory. The average bond lengths in the Aun-1Cu (n ≤ 9)...A systematic study on the structure and electronic properties of gold clusters doped each with one copper atom has been performed using the density functional theory. The average bond lengths in the Aun-1Cu (n ≤ 9) bimetallic clusters are shorter than those in the corresponding pure gold clusters. The ionization potentials of the bimetallic clusters Aun-1Cu (n 〈 9) are larger than those of the corresponding homoatomic gold clusters except for Aus. The energy gaps of the Au-Cu binary clusters are narrower than those of the Aun clusters except AuCu and Au3Cu. No obvious even-odd effect exists in the variations of the electron affinities and ionization potentials for the Aun-1Cu (n ≤ 9) clusters, which is in contrast to the case of gold clusters Aun.展开更多
C4'-H bond dissociation enthalpies of nucleosides were predicted using theoretical methods to a precision of 1-2 Kcal/mol. It was found that the stability of the C4' nucleoside radical is slightly dependent on...C4'-H bond dissociation enthalpies of nucleosides were predicted using theoretical methods to a precision of 1-2 Kcal/mol. It was found that the stability of the C4' nucleoside radical is slightly dependent on the base. The orders of stability are dA < dG < dT < dC for deoxynucleosides and U < G < A = C for nucleosides.展开更多
基金Supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (200525)the Science and Tech-nology Program of Wuhan City (20067003111-07)
文摘Some highly designable protein structures have dented on the surface of their native structures, and are not full compactly folded. According to hydrophobic-polar (HP) model the most designable structures are full compactly folded. To investigate the designability of the dented structures, we introduce the hydrogen bond energy in the secondary structures by using the secondary-structure-favored HP model proposed by Ou-yang etc. The result shows that the average designability increases with the strength of the hydrogen bond. The designabilities of the structures with same dented shape increase exponentially with the number of secondary structure sites. The dented structures can have the highest designabilities for a certain value of hydrogen bond energy density.
文摘On the basis of free-electronic bands, the Fermi energy is calculated by summing the band eigenvalues over Brillouin-zones ,and the results may lead to understand the physical basis of the average-bond-energy model in the calculation of valence-band offsets.
基金supported by the National Key Research and Development Program of China (2017YFA0303500, 2018YFA0208603)the National Natural Science Foundation of China (21633006, 21633007, 21790350)the Fundamental Research Funds for the Central Universities (WK2340000072)
文摘Molecular bond energy is a key parameter for analyzing the properties of chemical activity,stability and flexibility.Calculating bond energy is a challenge due to the cost of first-principles simulations and unsatisfactory prediction using empirical formula.Here we show that a neural network(NN)machine-learning method can achieve quick prediction of bond energies of organic molecules.Using atomic species and charge information as descriptors,we trained a NN protocol and applied it to predict the bond energy in a certain chemical bond that agreed with density functional theory calculations.This protocol also provided a way to evaluate the effects of different methods of atomic charge analysis on NN training.Trained to accurately estimate bond energies,this NN protocol provides a cost-effective tool for optimizing chemical reactions,accelerating molecular design,and other important applications.
文摘Calculation of the bonding energy of a molecular orbital for a series of small molecules has been carried out by using ab initio STO-3G method. The results obtained demonstrate that the concept of the molecular orbital bonding energy is applicable for judging whether a molecular orbital is bonding, nonbonding or antibonding besides Mulliken overlap criterion.
基金the National Natural Science Foundation of China(22373056,22031006,22393891)the National Key R&D Program of China(2023YFA1506402)+1 种基金the National Science&Technology Fundamental Resource Investigation Program of China(2018FY201200)Haihe Laboratory of Sustainable Chemical Transformations for financial support.L.Z.is supported by the National Program of Top-notchYoung Professionals.
文摘Bond dissociation energy(BDE),which refers to the enthalpy change for the homolysis of a specific covalent bond,is one of the basic thermodynamic properties of molecules.It is very important for understanding chemical reactivities,chemical properties and chemical transformations.Here,a machine learning-based comprehensive BDE prediction model was established based on the iBonD experimental BDE dataset and the calculated BDE dataset by St.John et al.Differential Structural and PhysicOChemical(D-SPOC)descriptors that reflected changes in molecules'structural and physicochemical features in the process of bond homolysis were designed as input features.
文摘hethesisanalysesthevalenceelectronstructuresof phase Γin Fe Zn transitionallayerof heat galvanized sheet used in cars by applying the Empirical Electron Theory of Solids andMolecules, and calculatesthebond energy ofthe major bondsand cohesiveenergy ofcrystals,from which we draw theconclusion:sincecrystal has alargercohesiveenergy, it has higherhardness, butsinceitsbondenergyisratherlow ,itiseasytobreak under pressurefrom out side, and thecrackiseasytocome up andspreadin phase Γ.
文摘On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of orbitals, as well as the backflow transformation, is studied. The Slater-Jastrow DMC algorithm gives BDEs of 359.1±0.12 kJ/mol for HB-H, 410.5±0.50 kJ/mol for HOB-OH, 357.8±1.46 kJ/mol for ClB-Cl, and 504.5±0.96 kJ/mol for B-Cl using B3PW91 orbitals and similar BDEs when B3LYP orbitals are used. DMC with backflow corrections (BF-DMC) gives a HB-H BDE of 369.9±0.12 kJ/mol which is close to one of the available experimental value (375.8 kJ/mol). In the case of HOB-OH BDE, the BF-DMC calculation is 446.04-1.84 k J/mol that is closer to the experimental BDE. The BF-DMC BDE for ClB-Cl is 343.2±2.34 kJ/mol and the BF-DMC B-Cl BDE is 523.3±0.33 kJ/mol, which are close to the experimental BDEs, 341.9 and 530.0 kJ/mol, respectively.
文摘Semiempirical quantum chemical method AM1 was employed to calculate the highest occupied molecular orbital (HOMO) energy levels (E-HOMO) for various types of antioxidants. It was verified that the correlation between logarithm of free radical scavenging rate constants (1gks) and E-HOMO substantially arises from the correlation between E-HOMO and O-H bond dissociation energies (BDE) of antioxidants. Furthermore, E-HOMO were poorly correlated with the logarithm of relative free radical scavenging rate constants (1gk(3)/k(1)) for various types of antioxidants that possess complex structures (r = 0.5602). So in a broad sense, E-HOMO was not an appropriate parameter to characterize the free radical scavenging activity of antioxidants.
基金Project supported by the National Natural Science Foundation of China and China Academy of Engineering Physics (Grant Nos 10376021, 10274055).
文摘By using the density functional theory (B3LYP) and four highly accurate complete basis set (CBS-Q, CBS-QB3, CBS-Lq, and CBS-4M)ab initio methods, the X(C, N, O)-NO2 bond dissociation energies (BDEs) for CH3NO2, C2H3NO2, C2H5NO2, HONO2, CH3ONO2, C2H5ONO2, NH2NO2 (CH3)2NNO2 are computed. By comparing the computed BDEs and experimental results, it is found that the B3LYP method is unable to predict satisfactorily the results of bond dissociation energy (BDE); however, all four CBS models are generally able to give reliable predication of the X(C, N, O)-NO2 BDEs for these nitro compounds. Moreover, the CBS-4M calculation is the least computationally demanding among the four CBS methods considered, Therefore, we recommend CBS-4M method as a reliable method of computing the BDEs for this nitro compound system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11047176)the Research Foundation of Education Bureau of Hubei Province,China (Grant Nos. Q20111305,B20101303,T201204,B20111304,and Q20091215)
文摘Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies(BDEs) for 15 acids.These compounds are studied by utilizing the hybrid density functional theory(DFT)(B3LYP,B3PW91,B3P86,PBE1PBE) and the complete basis set(CBS-Q) method in conjunction with the 6311G^** basis as DFT methods have been found to have low basis sets sensitivity for small and medium molecules in our previous work.Comparisons between the computational results and the experimental values reveal that CBS-Q method,which can produce reasonable BDEs for some systems in our previous work,seems unable to predict accurate BDEs here.However,the B3P86 calculated results accord very well with the experimental values,within an average absolute error of 2.3 kcal/mol.Thus,B3P86 method is suitable for computing the reliable BDEs of C-COOH bond for carboxylic acid compounds.In addition,the energy gaps between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of studied compounds are estimated,based on which the relative thermal stabilities of the studied acids are also discussed.
基金The project was supported by the National Natural Science Foundation of China (No. 10574096 and 10676025)
文摘Bond dissociation energies for the removal of nitrogen dioxide group in some nitroalkane energetic materials have been calculated by using the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B3P86 with 6-31g^** and 6-311g^** basis sets. The computed BDEs have been compared with the available experimental results. It is found that the B3P86 method with 6-31g^** and 6-311g^** basis sets can obtain satisfactory bond dissociation energies (BDEs), which are in extraordinary agreement with the experimental data. Considering the smaller mean absolute deviation and maximum difference, the reliable B3P86/6-311g^** method was recommended to compute the BDEs for the removal of nitrogen dioxide group in the nitroalkane energetic materials. Using the method, the BDEs of 8 other nitroalkane energetic materials have been calculated and the maximum difference from experimental value is 1.76 kcal.mo1^-1 (for the BDE of tC4Hg-NOz), which further proves the reliability of B3P86/6-311g^** method. In addition, it is noted that the BDEs of C-NO2 bond change slightly for main chain nitroalkane compounds with the maximum difference of only 3.43 kcal mo1^-1.
基金The project was supported by the National Natural Science Foundation of China (No. 10774039)
文摘The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing the computed energies and experimental results, we find that the B3P86/6-311G** method can give good results of BDE, which has the mean absolute deviation of 1.30kcal/mol. In addition, substituent effects were also taken into account. It is noted that the Hammett constants of substituent groups are related to the BDEs of the N-NO2 bond and the bond dissociation energies of the energetic materials studied decrease when increasing the number of NO2 group.
文摘The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the C--C bond dissociation energy (BDE) by experiments, so using quantum chemistry calculation such as density functional theory (DFT) to study the C--C bond dissociation energy is a very useful means. The impact of acceptor substituents and donor substituents on the C--C bond length distribution was studied.
基金supported by the National Natural Science Foundation of China (No. 10674099)
文摘Neutral aluminium alkyls are well known to act as ethylene oligomerization and polymerization catalysts and cocatalysts.On the basis of the full optimization of alkylaluminium compounds with Gaussian 98 program package at the B3LYP/6-31G** level,the selected structures and bonding energies were investigated extensively.The geometries and bonding energies of AlR3(R = H,CH3,C2H5,C3H7,C4H9) and Al(C2H5)2R'(R' = C2H5,C3H7,C4H9,C5H11,C6H13) were investigated extensively,and we found that,along with the prolongation of carbon chains the terminal C-C bond is shortened gradually until to a constant value of about 0.1532 nm in C4H9;and the bonding energy almost remains constant.The dative bonding of C2H4 to Al(C2H5)3,whose bonding energy is only 15.30 kJ/mol,is very weak.
基金supported by the Beijing Natural Science Foundation,China (No.2072014)the Ph.D. Program Foundation of the Ministry of Education of China (No.200800100006)
文摘Based on the empirical electron surface model (EESM),the covalent electron density of dangling bonds (CEDDB) was calculated for various crystal planes of gold,and the surface energy was calculated further.Calculation results show that CEDDB has a great influence on the surface energy of various index surfaces and the anisotropy of the surface.The calculated surface energy is in agreement with experimental and other theoretical values.The calculated surface energy of the close-packed (111) surface has the lowest surface energy,which agrees with the theoretical prediction.Also,it is found that the spatial distribution of covalent bonds has a great influence on the surface energy of various index surfaces.Therefore,CEDDB should be a suitable parameter to describe and quantify the dangling bonds and surface energy of various crystal surfaces.
基金the National Natural Science Foundation of China(Nos.41406090,42176045)the Science Foundation of Qingdao Agricultural University(No.631302)+1 种基金the Fujian Key Laboratory of Functional Marine Sensing Materials,Minjiang University(No.MJUKF-FMSM202102)the Natural Science Foundation of Shandong Province(Nos.ZR2019 MB020,ZR2020MB119)。
文摘Polybrominated diphenyl ethers(PBDEs)are a kind of serious pollutants in the ocean.Biodegradation is considered as an economical and safe way for PBDEs removal and reductive debromination dominates the initial pathway of anaerobic degradation.On the basis of experimental study,Octa-BDE 197,Hepta-BDE 183,Hexa-BDE 153,Penta-BDE 99 and Tetra-BDE 47 were selected as the initial degradation objects,and their debromination degradation were studied using density functional theory.The structures were optimized by Gaussian 09 program.Furthermore,the molecular orbitals and charge distribution were analyzed.All C-Br bond dissociation energies at different positions including ortho,meta and para bromine atoms were calculated and the sequence of debromination was obtained.There is a close relationship between molecular structure,charge,molecular orbital and C-Br bond.All PBDEs exhibited similar debromination pathways with preferential removal of meta and para bromines.
文摘A systematic study on the structure and electronic properties of gold clusters doped each with one copper atom has been performed using the density functional theory. The average bond lengths in the Aun-1Cu (n ≤ 9) bimetallic clusters are shorter than those in the corresponding pure gold clusters. The ionization potentials of the bimetallic clusters Aun-1Cu (n 〈 9) are larger than those of the corresponding homoatomic gold clusters except for Aus. The energy gaps of the Au-Cu binary clusters are narrower than those of the Aun clusters except AuCu and Au3Cu. No obvious even-odd effect exists in the variations of the electron affinities and ionization potentials for the Aun-1Cu (n ≤ 9) clusters, which is in contrast to the case of gold clusters Aun.
基金NNSFC(No.20272057)the State Ministry of Education for the financial support.
文摘C4'-H bond dissociation enthalpies of nucleosides were predicted using theoretical methods to a precision of 1-2 Kcal/mol. It was found that the stability of the C4' nucleoside radical is slightly dependent on the base. The orders of stability are dA < dG < dT < dC for deoxynucleosides and U < G < A = C for nucleosides.