期刊文献+
共找到85,489篇文章
< 1 2 250 >
每页显示 20 50 100
Hydrogel loaded with bone marrow stromal cell-derived exosomes promotes bone regeneration by inhibiting inflammatory responses and angiogenesis
1
作者 Shuai Zhang Chuan Lu +1 位作者 Sheng Zheng Guang Hong 《World Journal of Stem Cells》 SCIE 2024年第5期499-511,共13页
BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,neces... BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration. 展开更多
关键词 HYDROGEL bone marrow mesenchymal stem cells Macrophage polarization ANGIOGENESIS bone regeneration
下载PDF
Indication and surgical approach for reconstruction with endoprosthesis in bone-associated soft tissue sarcomas:Appropriate case management is vital
2
作者 RecepÖztürk 《World Journal of Clinical Cases》 SCIE 2024年第12期2004-2008,共5页
It is important for surgeons performing sarcoma surgery to know that bone resection and tumor prosthesis applications in soft tissue sarcomas(STS)have unique features in terms of indication,surgical approach and follo... It is important for surgeons performing sarcoma surgery to know that bone resection and tumor prosthesis applications in soft tissue sarcomas(STS)have unique features in terms of indication,surgical approach and follow-up,in terms of the management of these cases.Some STS are associated with bone and major neurovascular structures.Bone-associated STS are generally relatively large and relatively deep-seated.Additionally,the tendency for metastasis is high.In some cases,the decision about which structures to resect is difficult.These cases are often accompanied by poor oncological and surgical outcomes.Management of cases should be done by a multidisciplinary team in advanced centers specialized in this field.The surgical team must have sufficient knowledge and experience in the field of limb-sparing surgery.Preoperative evaluation and especially good planning of bone and soft tissue reconstruction are vital. 展开更多
关键词 Soft tissue sarcoma bone invasion bone resection Endoprosthesis replacement PROSTHESIS Limb salvage INDICATION Approach
下载PDF
Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiati
3
作者 Pakkath Narayanan Arya Iyyappan Saranya Nagarajan Selvamurugan 《World Journal of Stem Cells》 SCIE 2024年第2期102-113,共12页
Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed th... Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development.Osteogenesis is the process by which new bones are formed;it also aids in bone remodeling.Wnt/β-catenin and bone morphogenetic protein(BMP)signaling pathways are involved in many cellular processes and considered to be essential for life.Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body.Recent studies have indicated that these two signaling pathways contribute to osteogenic differen-tiation.Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway.Here,we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation,emphasizing the canonical pathways.This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch-and extracellular-regulated kinases in osteogenic differentiation and bone development. 展开更多
关键词 bone Mesenchymal stem cells Osteogenic differentiation WNT/Β-CATENIN bone morphogenetic proteins
下载PDF
Icariin accelerates bone regeneration by inducing osteogenesisangiogenesis coupling in rats with type 1 diabetes mellitus
4
作者 Sheng Zheng Guan-Yu Hu +2 位作者 Jun-Hua Li Jia Zheng Yi-Kai Li 《World Journal of Diabetes》 SCIE 2024年第4期769-782,共14页
BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To e... BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs. 展开更多
关键词 ICARIIN Osteogenesis-angiogenesis coupling Type 1 diabetes mellitus bone defect bone regeneration
下载PDF
Low-intensity pulsed ultrasound reduces alveolar bone resorption during orthodontic treatment via Lamin A/C-Yes-associated protein axis in stem cells
5
作者 Tong Wu Fu Zheng +7 位作者 Hong-Yi Tang Hua-Zhi Li Xin-Yu Cui Shuai Ding Duo Liu Cui-Ying Li Jiu-Hui Jiang Rui-Li Yang 《World Journal of Stem Cells》 SCIE 2024年第3期267-286,共20页
BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or to... BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process. 展开更多
关键词 Low-intensity pulsed ultrasound bone resorption OSTEOGENESIS Cytoskeleton-Lamin A/C-Yes-associated protein axis bone marrow mesenchymal stem cells Orthodontic tooth movement
下载PDF
Unveiling the role of hypoxia-inducible factor 2alpha in osteoporosis:Implications for bone health
6
作者 Ling-Ling Wang Zhan-Jin Lu +3 位作者 Shun-Kui Luo Yun Li Zhe Yang Hong-Yun Lu 《World Journal of Stem Cells》 SCIE 2024年第4期389-409,共21页
BACKGROUND Osteoporosis(OP)has become a major public health problem worldwide.Most OP treatments are based on the inhibition of bone resorption,and it is necessary to identify additional treatments aimed at enhancing ... BACKGROUND Osteoporosis(OP)has become a major public health problem worldwide.Most OP treatments are based on the inhibition of bone resorption,and it is necessary to identify additional treatments aimed at enhancing osteogenesis.In the bone marrow(BM)niche,bone mesenchymal stem cells(BMSCs)are exposed to a hypoxic environment.Recently,a few studies have demonstrated that hypoxiainducible factor 2alpha(HIF-2α)is involved in BMSC osteogenic differentiation,but the molecular mechanism involved has not been determined.AIM To investigate the effect of HIF-2αon the osteogenic and adipogenic differentiation of BMSCs and the hematopoietic function of hematopoietic stem cells(HSCs)in the BM niche on the progression of OP.METHODS Mice with BMSC-specific HIF-2αknockout(Prx1-Cre;Hif-2αfl/fl mice)were used for in vivo experiments.Bone quantification was performed on mice of two genotypes with three interventions:Bilateral ovariectomy,semilethal irradiation,and dexamethasone treatment.Moreover,the hematopoietic function of HSCs in the BM niche was compared between the two mouse genotypes.In vitro,the HIF-2αagonist roxadustat and the HIF-2αinhibitor PT2399 were used to investigate the function of HIF-2αin BMSC osteogenic and adipogenic differentiation.Finally,we investigated the effect of HIF-2αon BMSCs via treatment with the mechanistic target of rapamycin(mTOR)agonist MHY1485 and the mTOR inhibitor rapamycin.RESULTS The quantitative index determined by microcomputed tomography indicated that the femoral bone density of Prx1-Cre;Hif-2αfl/fl mice was lower than that of Hif-2αfl/fl mice under the three intervention conditions.In vitro,Hif-2αfl/fl mouse BMSCs were cultured and treated with the HIF-2αagonist roxadustat,and after 7 d of BMSC adipogenic differentiation,the oil red O staining intensity and mRNA expression levels of adipogenesis-related genes in BMSCs treated with roxadustat were decreased;in addition,after 14 d of osteogenic differentiation,BMSCs treated with roxadustat exhibited increased expression of osteogenesis-related genes.The opposite effects were shown for mouse BMSCs treated with the HIF-2αinhibitor PT2399.The mTOR inhibitor rapamycin was used to confirm that HIF-2αregulated BMSC osteogenic and adipogenic differentiation by inhibiting the mTOR pathway.Consequently,there was no significant difference in the hematopoietic function of HSCs between Prx1-Cre;Hif-2αfl/fl and Hif-2αfl/fl mice.CONCLUSION Our study showed that inhibition of HIF-2αdecreases bone mass by inhibiting the osteogenic differentiation and increasing the adipogenic differentiation of BMSCs through inhibition of mTOR signaling in the BM niche. 展开更多
关键词 Hypoxia-inducible factor-2α bone marrow niche bone mesenchymal stem cells OSTEOPOROSIS Osteogenic/adipogenic differentiation Mechanistic target of rapamycin signaling pathway
下载PDF
Influence of Statins and Fibrates Drugs on Bone Health and Regeneration
7
作者 Octavio Santiago Ivan Nadir Camal Ruggieri +3 位作者 Marina Ribeiro Paulini Valéria Paula Sassoli Fazan João Paulo Mardegan Issa Sara Feldman 《Journal of Biomaterials and Nanobiotechnology》 2024年第1期1-24,共24页
In the medical and dental field, the importance and need for the study of materials and drugs for use as bone grafts or regeneration in injured areas due to the presence of fractures, infections or tumors that cause e... In the medical and dental field, the importance and need for the study of materials and drugs for use as bone grafts or regeneration in injured areas due to the presence of fractures, infections or tumors that cause extensive loss of bone tissue is observed. Bone is a specialized, vascularized and dynamic connective tissue that changes throughout the life of the organism. When injured, it has a unique ability to regenerate and repair without the presence of scars, but in some situations, due to the size of the defect, the bone tissue does not regenerate completely. Thus, due to its importance, there is a great development in therapeutic approaches for the treatment of bone defects through studies that include autografts, allografts and artificial materials used alone or in association with bone grafts. Pharmaceuticals composed of biomaterials and osteogenic active substances have been extensively studied because they provide potential for tissue regeneration and new strategies for the treatment of bone defects. Statins work as specific inhibitors of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoAreductase). They represent efficient drugs in lowering cholesterol, as they reduce platelet aggregation and thrombus deposition;in addition, they promote angiogenesis, reduce the β-amyloid peptide related to Alzheimer’s disease and suppress the activation of T lymphocytes. Furthermore, these substances have been used in the treatment of hypercholesterolemia and coronary artery disease. By inhibiting HMG-CoAreductase, statins not only inhibit cholesterol synthesis, but also exhibit several other beneficial pleiotropic effects. Therefore, there has been increasing interest in researching the effects of statins, including Simvastatin, on bone and osteometabolic diseases. However, statins in high doses cause inflammation in bone defects and inhibit osteoblastic differentiation, negatively contributing to bone repair. Thus, different types of studies with different concentrations of statins have been studied to positively or negatively correlate this drug with bone regeneration. In this review we will address the positive, negative or neutral effects of statins in relation to bone defects providing a comprehensive understanding of their application. Finally, we will discuss a variety of statin-based drugs and the ideal dose through a theoretical basis with preclinical, clinical and laboratory work in order to promote the repair of bone defects. 展开更多
关键词 bone STATINS ROSUVASTATIN Sinvastatin FIBRATES FENOFIBRATE bone Regeneration
下载PDF
Epdemiology and Treatment of Pseudarthrosis of Long Bones in the Servce D Orthopedics-Traumatology of the University Hospital of Donka
8
作者 Camara Nouhou Mangué Diallo Mamadou Moustapha +5 位作者 Moustapha Alhassane Diallo Alpha Mamadou Fela Sidimé Sory Camara Abdoulaye Kolié Germain Lamah Léopold 《Open Journal of Orthopedics》 2024年第3期133-138,共6页
Introduction: Pseudarthrosis (PSA) of the diaphysis of long bones still remains a current problem, despite improvements in the treatment of these fractures. Our study aims to study the epidemiological and therapeutic ... Introduction: Pseudarthrosis (PSA) of the diaphysis of long bones still remains a current problem, despite improvements in the treatment of these fractures. Our study aims to study the epidemiological and therapeutic aspects of PSA of the diaphysis of long bones. Method: This retrospective work concerns 30 cases of non-union of the diaphysis of long bones treated in the orthopedic and trauma surgery department at Donka National Hospital, during a period of 18 months from January 1, 2019 to June 30, 2020. Results: We recruited 30 patients, 80% of whom were male, with an average age of 39.9 years. Public road accidents (AVP) represented the main cause of fractures of the diaphysis of long bones 87%, they were open in 25 cases or 83%. The fractures were located in the middle 1/3 of the diaphysis of the long bones in 50% of cases. Treatment of initial fractures was traditional in 21 cases, orthopedic in 2 cases and surgical in 7 cases. It was aseptic nonunion in 28 cases (93%) and septic nonunion in 2 cases. They were hypertrophic in 7 cases, slightly hypertrophic in 5 cases, oligotrophic in 11 cases, atrophic in 6 cases and with bone defect in 1 case. The treatment was based on osteosynthesis including 16 cases of screwed “PV” plate: 7 cases of centromedullary “ECM” nailing, 2 cases of external fixator, 1 case of broaching and 4 cases of Plastering. The results according to ASAMI criteria on an anatomical level were excellent in 19 cases, good in 3 cases and poor in 3 cases, with a union rate of 76%. And 5 patients undergoing consolidation. Conclusion: Based on the literature data and the experience of our department, the true treatment of PSA requires correct management of the initial fracture without forgetting the interest in preventing AVP which appears to be an element essential, making it possible to reduce the incidence of fractures of the diaphysis. 展开更多
关键词 PSEUDARTHROSIS Aseptic-Septic-Diaphysis Long bones Screwed Plate Intramedullary Nailing bone Graft Osteo-Muscular Decortication
下载PDF
Anisotropy of Trabecular Bone from Ultra-Distal Radius Digital X-Ray Imaging: Effects on Bone Mineral Density and Age
9
作者 Jian-Feng Chen 《Open Journal of Radiology》 2024年第1期14-23,共10页
Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions... Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age. 展开更多
关键词 ANISOTROPY Trabecular bone Score bone Mineral Density Ultra-Distal Radius Digital X-Ray Image
下载PDF
Contribution of Bone Scintigraphy in the Metastatic Extension Assessment of Prostate Cancer: A Study of 288 Cases in the Nuclear Medicine Department of Idrissa Pouye General Hospital, Dakar
10
作者 El Hadji Amadou Lamine Bathily Ousseynou Diop +7 位作者 Mamoudou Salif Djigo Gora Thiaw Kalidou Gueye Mohamed Chekhma Olatounde Herbert Fachinan Boucar Ndong Omar Ndoye Mamadou Mbodj 《Open Journal of Biophysics》 2024年第2期79-98,共20页
Introduction: Prostate cancer is the most frequently diagnosed male malignancy and the fifth leading cause of cancer death in men worldwide. Since the advent of screening methods such as Prostate Specific Antigen (PSA... Introduction: Prostate cancer is the most frequently diagnosed male malignancy and the fifth leading cause of cancer death in men worldwide. Since the advent of screening methods such as Prostate Specific Antigen (PSA) assay, digital rectal examination (DRE) and prostate biopsy, its incidence has increased significantly. The aim of our study was to analyse aspects of bone scintigraphy (BS) as part of the metastatic extension assessment of prostate cancer in Senegal. Patients and Methods: This was a retrospective descriptive and analytical study, running from January 1<sup>er</sup> 2022 to August 31 2023. Patients with histologically confirmed prostate cancer were included. Whole-body scans (WBS) were performed using a dual-head SPECT gamma camera (Mediso Nucline TM Spirit DH-V type), 3 hours after intravenous injection of 8 MBq/kg (555 to 740 MBq) of <sup>99m</sup>Tc-HMDP. Results: A total of 288 patients with a mean age of 68.37 ± 7.79 years were included. The median total PSA level was 97.6 ng/ml, with 144 patients having a level greater than or equal to 20 ng/ml. All patients had adenocarcinoma, and the Gleason score was available in 202 (70.13%) patients, 75.75% of whom had a score greater than or equal to 7. BS was contributory in 70.48% of cases, with 30.90% positive and 39.58% negative. The result was inconclusive in 85 patients (29.51%). The mean PSA for patients with a positive scan was 190.2 ng/ml and 40.6 ng/ml for those with a negative scan. Multiple metastatic lesions predominated (87.35% of cases). Metastatic lesions occurred preferentially in the axial skeleton, with a proportion of 68% versus 32% in the appendicular skeleton. Classification of bone metastases according to the SOLOWAY score revealed grade I (62.07%), grade II (35.63%) and grade IV (2.30%). Conclusion: In Senegal, prostate cancer is generally diagnosed in men of advanced age. The presence of bone metastases is frequent in its evolution, transforming a curable localized disease into a generalized disease with a compromised prognosis. Bone scintigraphy remains an essential part of the initial work-up and evaluation of response to treatment. 展开更多
关键词 Prostate Cancer bone Metastasis bone Scintigraphy Senegal
下载PDF
Demineralized Bone Matrix Fibers plus Allograft Bone for Multilevel Posterolateral Spine Fusion: A Game Changer?
11
作者 Bodin Arnaud Barnouin Laurence +2 位作者 Coulomb Remy Haignere Vincent Kouyoumdjian Pascal 《Open Journal of Orthopedics》 2024年第2期105-113,共9页
Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been ... Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been used to avoid the morbidity and insufficient quantity associated with harvesting autologous bone. The primary objective of this retrospective study was to determine whether, in patients with increased risk of operative nonunion related to multilevel fusion, adding DBM fibers to mineralized bone allograft resulted in better fusion than using allograft alone. The secondary objectives were to evaluate how adding DBM fibers affects functional disability, low back pain, intraoperative blood loss and the nonunion rate. Methods: This retrospective study involved a chart review of consecutive patients who underwent multilevel lumbar spinal fusion and were operated on by a single surgeon. The patients were divided into two groups: 14 patients received mineralized bone allograft (control group) and 14 patients received a combination of mineralized bone allograft and DBM (experimental group). Patients were reviewed at a mean of 16.4 ± 2.2 months after surgery at which point CT scans were analyzed to determine whether fusion had occurred;Oswestry disability index (ODI) and pain were also evaluated. Results: A mean of 5 levels [min 2, max 13] were fused in these patients. Posterolateral fusion as defined by the Lenke classification was not significantly different between groups. The experimental DBM group had a significantly better composite fusion score than the control group (P Discussion: Adding DBM fibers to allograft bone during multilevel posterolateral spinal fusion was safe and produced better composite fusion than using allograft only as an autograft extender. 展开更多
关键词 Spine Surgery Demineralized bone Fibers bone Substitutes Retrospective Study
下载PDF
U-Net Based Dual-Pooling Segmentation of Bone Metastases in Thoracic SPECT Bone Scintigrams
12
作者 Yang He Qiang Lin +1 位作者 Yongchun Cao Zhengxing Man 《Journal of Computer and Communications》 2024年第4期60-71,共12页
In order to enhance the performance of the CNN-based segmentation models for bone metastases, this study proposes a segmentation method that integrates dual-pooling, DAC, and RMP modules. The network consists of disti... In order to enhance the performance of the CNN-based segmentation models for bone metastases, this study proposes a segmentation method that integrates dual-pooling, DAC, and RMP modules. The network consists of distinct feature encoding and decoding stages, with dual-pooling modules employed in encoding stages to maintain the background information needed for bone scintigrams diagnosis. Both the DAC and RMP modules are utilized in the bottleneck layer to address the multi-scale problem of metastatic lesions. Experimental evaluations on 306 clinical SPECT data have demonstrated that the proposed method showcases a substantial improvement in both DSC and Recall scores by 3.28% and 6.55% compared the baseline. Exhaustive case studies illustrate the superiority of the methodology. 展开更多
关键词 Tumor bone Metastasis bone Scintigram Lesion Segmentation CNN Dual Pooling
下载PDF
Place of Bone Scintigraphy in the Assessment of Extension and Follow-Up of Breast Cancer in Senegal: Study of 165 Cases in the Nuclear Medicine Department of Idrissa Pouye General Hospital (Dakar)
13
作者 El Hadji Amadou Lamine Bathily Mamoudou Salif Djigo +7 位作者 Djimby Ba Gora Thiaw Ousseynou Diop Kalidou Gueye Olatounde Herbert Fachinan Boucar Ndong Omar Ndoye Mamadou Mbodj 《Open Journal of Medical Imaging》 2024年第1期10-30,共21页
Introduction: Breast cancer is the most common cancer in women worldwide, accounting for an estimated 22% of all female cancers. It is the leading cause of cancer mortality in women, almost all of which is due to meta... Introduction: Breast cancer is the most common cancer in women worldwide, accounting for an estimated 22% of all female cancers. It is the leading cause of cancer mortality in women, almost all of which is due to metastases, with 73% of metastases occurring in the bone. In oncology, metastable technetium 99-labelled methylene bisphosphonate bone scintigraphy (BS) remains the standard examination for detecting and assessing the extent of bone metastases. The aim of this study was to assess the role of BS in the evaluation and follow-up of breast cancer in Senegal. Methodology: This was a retrospective study of breast cancer patients who underwent bone scintigraphy with <sup>99m</sup>Tc-HMDP in the nuclear medicine department of Idrissa Pouye General Hospital (IPGHO), from July 2009 to June 2022. Results: We enrolled 165 patients, mean age 46.79 years (27 - 87 years). BS was performed in 94.37% of cases for post-therapeutic monitoring and in 5.63% for pre-therapeutic assessment. Results were contributory in 131 patients (92.25%), of whom 72 cases (50.70%) were normal and 59 cases (41.55%) positive or presenting bone metastases;and non-contributory or doubtful in 11 cases (7.75%). Secondary bone locations were multiple in 57 cases (96.61%) and single or solitary in 2 cases (3.39%). The scintigraphic appearance of bone metastases was hyper-fixative in 58 cases (98.31%) and mixed in 1 case (1.69%). Bone lesions were quantified using the Soloway’s grading classification. Conclusion: BS with <sup>99m</sup>Tc-labelled bisphosphonates remains the examination of choice for skeletal exploration, in the detection and extension of bone metastases in breast cancer. Performance has been enhanced by the development of SPECT coupled with CT (SPECT-CT). 展开更多
关键词 Breast Cancer bone Scintigraphy 99mTc-HMDP bone Metastases
下载PDF
Amino acid and mineral digestibility,bone ash,and plasma inositol is increased by including microbial phytase in diets for growing pigs
14
作者 Liz Vanessa Lagos Mike Richard Bedford Hans Henrik Stein 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期699-712,共14页
Background The effect of microbial phytase on amino acid and energy digestibility is not consistent in pigs,which may be related to the phytase dosage or the adaptation length to the diet.Therefore,an experiment was c... Background The effect of microbial phytase on amino acid and energy digestibility is not consistent in pigs,which may be related to the phytase dosage or the adaptation length to the diet.Therefore,an experiment was conducted to test the hypotheses that increasing dietary phytase after an 18-day adaptation period:1)increases nutrient and energy digestibility;2)increases plasma P,plasma inositol,and bone ash of young pigs;and 3)demonstrates that maximum phytate degradation requires more phytase than maximum P digestibility.Results Data indicated that increasing inclusion of phytase[0,250,500,1,000,2,000,and 4,000 phytase units(FTU)/kg feed]in corn-soybean meal-based diets increased apparent ileal digestibility(AID)of Trp(quadratic;P<0.05),and of Lys and Thr(linear;P<0.05),and tended to increase AID of Met(linear;P<0.10).Increasing dietary phytase also increased AID and apparent total tract digestibility(ATTD)of Ca and P(quadratic;P<0.05)and increased ATTD of K and Na(linear;P<0.05),but phytase did not influence the ATTD of Mg or gross energy.Concentrations of plasma P and bone ash increased(quadratic;P<0.05),and plasma inositol also increased(linear;P<0.05)with increasing inclusion of phytase.Reduced concentrations of inositol phosphate(IP)6 and IP5(quadratic;P<0.05),reduced IP4 and IP3(linear;P<0.05),but increased inositol concentrations(linear;P<0.05)were observed in ileal digesta as dietary phytase increased.The ATTD of P was maximized if at least 1,200 FTU/kg were used,whereas more than 4,000 FTU/kg were needed to maximize inositol release.Conclusions Increasing dietary levels of phytase after an 18-day adaptation period increased phytate and IP ester degradation and inositol release in the small intestine.Consequently,increasing dietary phytase resulted in improved digestibility of Ca,P,K,Na,and the first 4 limiting amino acids,and in increased concentrations of bone ash and plasma P and inositol.In a corn-soybean meal diet,maximum inositol release requires approximately 3,200 FTU/kg more phytase than that required for maximum P digestibility. 展开更多
关键词 bone ash Inositol Nutrient digestibility PHYTASE Phytate degradation PIGS
下载PDF
Muscle strength deficits are associated with low bone mineral density in young pediatric cancer survivors:The iBoneFIT project
15
作者 Andres Marmol-Perez Jose J.Gil-Cosano +6 位作者 Esther Ubago-Guisado Francisco J.Llorente-Cantarero Juan Francisco Pascual-Gázquez Kirsten K.Ness Vicente Martinez-Vizcaino Jonatan R.Ruiz Luis Gracia-Marco 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第3期419-427,共9页
Background Pediatric cancer survivors are at increased risk of muscle weakness and low areal bone mineral density(aBMD).However,the prevalence of muscle strength deficits is not well documented,and the associations of... Background Pediatric cancer survivors are at increased risk of muscle weakness and low areal bone mineral density(aBMD).However,the prevalence of muscle strength deficits is not well documented,and the associations of muscle strength with aBMD are unknown in this population.Therefore,this study aimed to investigate the prevalence of upper-and lower-body muscle strength deficits and to examine the associations of upper-and lower-body muscle strength with age-,sex,and race-specific aBMD Z-scores at the total body,total hip,femoral neck,and lumbar spine.Methods This cross-sectional study included 116 pediatric cancer survivors(12.1±3.3 years old,mean±SD;42.2%female).Upper-and lower-body muscle strength were assessed by handgrip and standing long jump test,respectively.Dual‑energy X‑ray absorptiometry was used to measure aBMD(g/cm2).Associations between muscle strength and aBMD were evaluated in multivariable linear regression models.Logistic regression was used to evaluate the contribution of muscle strength(1-decile lower)to the odds of having low aBMD(Z-score≤1.0).All analyses were adjusted for time from treatment completion,radiotherapy exposure,and body mass index.Results More than one-half of survivors were within the 2 lowest deciles for upper-(56.9%)and lower-body muscle strength(60.0%)in comparison to age-and sex-specific reference values.Muscle strength deficits were associated with lower aBMD Z-scores at all sites(B=0.133–0.258,p=0.001–0.032).Each 1-decile lower in upper-body muscle strength was associated with 30%–95%higher odds of having low aBMD Z-scores at all sites.Each 1-decile lower in lower-body muscle strength was associated with 35%–70%higher odds of having low aBMD Z-scores at total body,total hip,and femoral neck.Conclusion Muscle strength deficits are prevalent in young pediatric cancer survivors,and such deficits are associated with lower aBMD Z-scores at all sites.These results suggest that interventions designed to improve muscle strength in this vulnerable population may have the added benefit of improving aBMD. 展开更多
关键词 bone health Childhood cancer DXA Lean mass Resistance training
下载PDF
3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration
16
作者 Xiao Zhao Siyi Wang +6 位作者 Feilong Wang Yuan Zhu Ranli Gu Fan Yang Yongxiang Xu Dandan Xia Yunsong Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期966-979,共14页
In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we dev... In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we developed an Mg-1Ca/polycaprolactone(Mg-1Ca/PCL)composite scaffolds to overcome these limitations.We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5,10,and 20 wt%.Porous scaffolds with controlled macro-and microstructure were printed using the fused deposition modeling method.We explored the mechanical strength,biocompatibility,osteogenesis performance,and molecular mechanism of the Mg-1Ca/PCL composites.The 5 and 10 wt%Mg-1Ca/PCL composites were found to have good biocompatibility.Moreover,they promoted the mechanical strength,proliferation,adhesion,and osteogenic differentiation of human bone marrow stem cells(hBMSCs)of pure PCL.In vitro degradation experiments revealed that the composite material stably released Mg_(2)+ions for a long period;it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth.Microcomputed tomography and histological analysis showed that both 5 and 10 wt%Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects.Our results indicated that the Wnt/β-catenin pathway was involved in the osteogenic effect.Therefore,Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application.Statement of significance:Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects.However,there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds.This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities.Furthermore,the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold.The obtained porous scaffolds can significantly promote the regeneration of bone defects. 展开更多
关键词 3D printing bone tissue engineering MAGNESIUM OSTEOGENIC POLYCAPROLACTONE Scaffold.
下载PDF
Biofabrication of nanocomposite-based scaffolds containing human bone extracellularmatrix for the differentiation of skeletal stem and progenitor cells
17
作者 Yang-Hee Kim Janos M.Kanczler +6 位作者 Stuart Lanham Andrew Rawlings Marta Roldo Gianluca Tozzi Jonathan I.Dawson Gianluca Cidonio Richard O.C.Oreffo 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第2期121-136,共16页
Autograft or metal implants are routinely used in skeletal repair.However,they fail to provide long-term clinical resolution,necessitating a functional biomimetic tissue engineering alternative.The use of native human... Autograft or metal implants are routinely used in skeletal repair.However,they fail to provide long-term clinical resolution,necessitating a functional biomimetic tissue engineering alternative.The use of native human bone tissue for synthesizing a biomimeticmaterial inkfor three-dimensional(3D)bioprintingof skeletal tissueis anattractivestrategyfor tissueregeneration.Thus,human bone extracellular matrix(bone-ECM)offers an exciting potential for the development of an appropriate microenvironment for human bone marrow stromal cells(HBMSCs)to proliferate and differentiate along the osteogenic lineage.In this study,we engineered a novel material ink(LAB)by blending human bone-ECM(B)with nanoclay(L,Laponite®)and alginate(A)polymers using extrusion-based deposition.The inclusion of the nanofiller and polymeric material increased the rheology,printability,and drug retention properties and,critically,the preservation of HBMSCs viability upon printing.The composite of human bone-ECM-based 3D constructs containing vascular endothelial growth factor(VEGF)enhanced vascularization after implantation in an ex vivo chick chorioallantoic membrane(CAM)model.The inclusion of bone morphogenetic protein-2(BMP-2)with the HBMSCs further enhanced vascularization and mineralization after only seven days.This study demonstrates the synergistic combination of nanoclay with biomimetic materials(alginate and bone-ECM)to support the formation of osteogenic tissue both in vitro and ex vivo and offers a promising novel 3D bioprinting approach to personalized skeletal tissue repair. 展开更多
关键词 Extracellular matrix NANOCLAY bone 3D bioprinting
下载PDF
Surgical management of tegmen defects of the temporal bone and meningoencephalic herniation: our experience
18
作者 Giuseppe De Donato Emanuela Fuccillo +7 位作者 Alberto Maria Saibene Elena Ferrari Giorgia Carlotta Pipolo Antonia Pisani Liliana Colletti Anastasia Urbanelli Luigi De Donato Giovanni Felisati 《Journal of Otology》 CAS CSCD 2024年第1期30-34,共5页
1. Introduction The tegmental wall of the tympanic cavity is a thin plate of the temporal bone that separates the middle cranial fossa(MCF) from the ear. This anatomical region consists of two areas: an anterior one, ... 1. Introduction The tegmental wall of the tympanic cavity is a thin plate of the temporal bone that separates the middle cranial fossa(MCF) from the ear. This anatomical region consists of two areas: an anterior one, comprised of the tegmen tympani(To′th et al., 2007), and a posterior one, formed by the tegmen antri and the tegmen mastoideum(Makki et al., 2011). In some patients, the tegmental region of the temporal bone can be interrupted, causing a tegmen defect(TD). A TD is sometimes associated with a meningoencephalic herniation(MEH), in which brain tissue herniates through a TD. 展开更多
关键词 al. HERNIATION bone
下载PDF
Customized scaffolds for large bone defects using 3D‑printed modular blocks from 2D‑medical images
19
作者 Anil AAcar Evangelos Daskalakis +4 位作者 Paulo Bartolo Andrew Weightman Glen Cooper Gordon Blunn Bahattin Koc 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期74-87,共14页
Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced ... Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects. 展开更多
关键词 Additive manufacturing Modular scaffolds Large bone defect Customized scaffold design Patient-specific scaffolds
下载PDF
Calcium-fortified fresh milk ameliorates postmenopausal osteoporosis via regulation of bone metabolism and gut microbiota in ovariectomized rats
20
作者 Qishan Wang Bin Liu +5 位作者 Xianping Li Junying Zhao Zongshen Zhang Weicang Qiao Xinyue Wei Lijun Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1258-1270,共13页
The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorat... The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorating postmenopausal osteoporosis in a rat model established using bilateral ovariectomy.After 3 months of FM(containing vitamin D,and casein phosphopeptides,1000 mg Ca/100 g)or control milk(110 mg Ca/100 g milk)supplementation,bone changes were assessed using dual-energy X-ray absorptiometry,microcomputed tomography,and bone biomechanical testing.The results revealed that FM can regulate bone metabolism and gut microbiota composition,which act on bone metabolism through pathways associated with steroid hormone biosynthesis,relaxin signaling,serotonergic synapse,and unsaturated fatty acid biosynthesis.Furthermore,FM administration significantly increased bone mineral content and density in the lumbar spine and femur,as well as femoral compressive strength,while improving femoral trabecular bone parameters and microarchitecture.Mechanistically,we found that the effects may be due to increased levels of estrogen,bone formation marker osteocalcin,and procollagen typeⅠN-propeptide,and decreased expression of the bone resorption marker C-telopiptide and tartrate-resistant acid phosphatase 5b.Overall,the findings suggest that FM is a potential alternative therapeutic option for ameliorating postmenopausal osteoporosis. 展开更多
关键词 Dairy products CALCIUM Vitamin D bone turnover markers Gut microbiota Postmenopausal osteoporosis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部