期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization
1
作者 Zeyan Liang Zhelun Yang +5 位作者 Haishu Xie Jian Rao Xiongjie Xu Yike Lin Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2259-2269,共11页
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)... Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells hypoxia preconditioning interleukin-1 receptor-associated kinase 1 MACROPHAGES mesenchymal stem cells small extracellular vesicles spinal cord injury
下载PDF
Effects of interleukin-10 treated macrophages on bone marrow mesenchymal stem cells via signal transducer and activator of transcription 3 pathway
2
作者 Meng-Hao Lyu Ce Bian +3 位作者 Yi-Ping Dou Kang Gao Jun-Ji Xu Pan Ma 《World Journal of Stem Cells》 SCIE 2024年第5期560-574,共15页
BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can sign... BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process.AIM To assess the influence of interleukin-10(IL-10)on the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)following their interaction with macrophages in an inflammatory environment.METHODS IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment.In this study,we investigated its impact on the proliferation,migration,and osteogenesis of BMSCs.The expression levels of signal transducer and activator of transcription 3(STAT3)and its activated form,phos-phorylated-STAT3,were examined in IL-10-stimulated macrophages.Subsequently,a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling.RESULTS IL-10-stimulated macrophages underwent polarization to the M2 type through substitution,and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs.Mechanistically,STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages.Specifically,IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response,as evidenced by its diminished impact on the osteogenic differentiation of BMSCs.CONCLUSION Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs.The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs’osteogenic differentiation. 展开更多
关键词 MACROPHAGES INTERLEUKIN-10 bone marrow mesenchymal stem cells Signal transducer and activator of transcription 3 Inflammatory response
下载PDF
Exosomes from bone marrow mesenchymal stem cells are a potential treatment for ischemic stroke 被引量:7
3
作者 Chang Liu Tian-Hui Yang +3 位作者 Hong-Dan Li Gong-Zhe Li Jia Liang Peng Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2246-2251,共6页
Exosomes derived from human bone marrow mesenchymal stem cells(MSC-Exo)are characterized by easy expansion and storage,low risk of tumor formation,low immunogenicity,and anti-inflammatory effects.The therapeutic effec... Exosomes derived from human bone marrow mesenchymal stem cells(MSC-Exo)are characterized by easy expansion and storage,low risk of tumor formation,low immunogenicity,and anti-inflammatory effects.The therapeutic effects of MSC-Exo on ischemic stroke have been widely explored.However,the underlying mechanism remains unclear.In this study,we established a mouse model of ischemic brain injury induced by occlusion of the middle cerebral artery using the thread bolt method and injected MSC-Exo into the tail vein.We found that administration of MSC-Exo reduced the volume of cerebral infarction in the ischemic brain injury mouse model,increased the levels of interleukin-33(IL-33)and suppression of tumorigenicity 2 receptor(ST2)in the penumbra of cerebral infarction,and improved neurological function.In vitro results showed that astrocyte-conditioned medium of cells deprived of both oxygen and glucose,to simulate ischemia conditions,combined with MSC-Exo increased the survival rate of primary cortical neurons.However,after transfection by IL-33 siRNA or ST2 siRNA,the survival rate of primary cortical neurons was markedly decreased.These results indicated that MSC-Exo inhibited neuronal death induced by oxygen and glucose deprivation through the IL-33/ST2 signaling pathway in astrocytes.These findings suggest that MSC-Exo may reduce ischemia-induced brain injury through regulating the IL-33/ST2 signaling pathway.Therefore,MSC-Exo may be a potential therapeutic method for ischemic stroke. 展开更多
关键词 ASTROCYTES bone marrow mesenchymal stem cells brain injury EXOSOME IL-33 inflammation ischemic stroke neurological function NEURON ST2
下载PDF
Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage 被引量:4
4
作者 Liu-Ting Hu Bing-Yang Wang +2 位作者 Yu-Hua Fan Zhi-Yi He Wen-Xu Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期560-567,共8页
Our previous studies showed that miR-23b was downregulated in patients with intracerebral hemorrhage(ICH). This indicates that miR-23b may be closely related to the patho-physiological mechanism of ICH, but this hypot... Our previous studies showed that miR-23b was downregulated in patients with intracerebral hemorrhage(ICH). This indicates that miR-23b may be closely related to the patho-physiological mechanism of ICH, but this hypothesis lacks direct evidence. In this study, we established rat models of ICH by injecting collagenase Ⅶ into the right basal ganglia and treating them with an injection of bone marrow mesenchymal stem cell(BMSC)-derived exosomal miR-23b via the tail vein. We found that edema in the rat brain was markedly reduced and rat behaviors were improved after BMSC exosomal miR-23b injection compared with those in the ICH groups. Additionally, exosomal miR-23b was transported to the microglia/macrophages, thereby reducing oxidative stress and pyroptosis after ICH. We also used hemin to mimic ICH conditions in vitro. We found that phosphatase and tensin homolog deleted on chromosome 10(PTEN) was the downstream target gene of miR-23b, and exosomal miR-23b exhibited antioxidant effects by regulating the PTEN/Nrf2 pathway. Moreover, miR-23b reduced PTEN binding to NOD-like receptor family pyrin domain containing 3(NLRP3) and NLRP3 inflammasome activation, thereby decreasing the NLRP3-dependent pyroptosis level. These findings suggest that BMSC-derived exosomal miR-23b exhibits antioxidant effects through inhibiting PTEN and alleviating NLRP3 inflammasome-mediated pyroptosis, thereby promoting neurologic function recovery in rats with ICH. 展开更多
关键词 bone marrow mesenchymal stem cells exosomal miRNAs intracerebral hemorrhage miR-23b NEUROINFLAMMATION NLRP3 inflammasome Nrf2 oxidative stress PTEN PYROPTOSIS
下载PDF
A novel mutation in ROR2 led to the loss of function of ROR2 and inhibited the osteogenic differentiation capability of bone marrow mesenchymal stem cells(BMSCs)
5
作者 WENQI CHEN XIAOYANG CHU +6 位作者 YANG ZENG YOUSHENG YAN YIPENG WANG DONGLAN SUN DONGLIANG ZHANG JING ZHANG KAI YANG 《BIOCELL》 SCIE 2023年第7期1561-1569,共9页
Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study... Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome(ARRS).This study attempted to explore the impact of the ROR2:c.904C>T variant specifically on the osteogenic differentiation of BMSCs.Methods:Coimmunoprecipitation(CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a.Double-immunofluorescence staining was used for determining the expressions and co-localization of ROR2 and Wnt5a in bone marrow mesenchymal stem cells(BMSCs).Western blot(WB)analysis and quantitative reverse transcription polymerase chain reaction(RT-qPCR)were conducted to identify the expression levels of ROR2 in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T.The alkaline phosphatase(ALP)activity was detected,and Alizarin Red S staining was done for evaluating the osteogenic differentiation of BMSCs.RT-qPCR was employed to identify the expression of the sphingomyelin synthase 1(SMS1)mRNA in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T and the mRNA expression levels of Runt-related transcription factor 2(RUNX2),osteocalcin(OCN),and osteopontin(OPN).WB was performed to confirm the protein expressions of extracellular regulated protein kinases1(ERK),P-ERK,Smad family member1/5/8(Smad1/5/8),P-Smad1/5/8,P-P38,P38,RUNX2,OCN,and OPN in the BMSCs transfected with LV-shROR2/LV-ROR2-c.904C>T and sphingomyelin(SM).Results:The ROR2:c.904C>T mutant altered the subcellular localization of the ROR2 protein,which caused an impaired interaction between ROR2 and Wnt5a.The depletion of ROR2 restricted the osteogenic differentiation capability of BMSCs and downregulated the expression of SMS1.SM treatment could reverse the inhibition of osteoblastic differentiation in ROR2-depleted BMSCs.Conclusion:The findings of this work revealed that the ROR2:c.904C>T variant led to the loss of function of ROR2,which impaired the interaction between ROR2 and Wnt5a and also controlled the osteogenic differentiation capability of BMSCs.Furthermore,SM was revealed to be engaged in the osteoblastic differentiation of BMSCs regulated by ROR2,which renders SM a potential target in the therapy for ARRS. 展开更多
关键词 bone marrow mesenchymal stem cells ROR2 WNT5A Osteogenic differentiation SPHINGOMYELIN
下载PDF
Exploring the Mechanism of CircRNA-vgll3 in Osteogenically Differentiated Human Bone Marrow Mesenchymal Stem Cells
6
作者 Yajie Huo Yu Mao +9 位作者 Fang Luo Fengjiao Zhang Lifang Xie Xiaoke Zhang Kai Liu Ling Sun Hongmei Liu Lige Song Huanhuan Wang Zhiqiang Kang 《Journal of Clinical and Nursing Research》 2023年第4期151-158,共8页
Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high... Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high-level group,circRNA-vgll3 low-level group,and negative control group(circRNA-vgll3 not transfected)according to the amount of transfection.The proliferation and apoptosis of BMSCs osteoblasts in each group were analyzed,and the alkaline phosphatase(ALP)activity,type I collagen gray value,bone morphogenetic protein 2(BMP-2),Runx2 protein,and mRNA expression levels were detected.Results:The circRNA-vgll3 low-level group had a significant inhibitory effect on the proliferation of BMSCs osteoblasts,and the apoptosis rate of the circRNA-vgll3 low-level group was significantly higher than that of the circRNA-vgll3 high-level group(P<0.05);ALP activity,type I collagen gray value,BMP-2,Runx2 protein,and mRNA expression levels in the high-level circRNA-vgll3 group were significantly higher than those in the low-level circRNA-vgll3 group,and the difference was statistically significant(P<0.05).Conclusion:Overexpression of circRNA-vgll3 can promote the osteogenic differentiation ability of BMSCs,while low expression of circRNA-vgll3 can inhibit the osteogenic differentiation ability of BMSCs.The main mechanism of action is that circRNA-vgll3 can affect osteogenic differentiation by regulating the Runx2 protein. 展开更多
关键词 CircRNA-vgll3 Osteogenic differentiation Human bone marrow mesenchymal stem cells Mechanism of action
下载PDF
Bone marrow mesenchymal stem cells and exercise restore motor function following spinal cord injury by activating PI3K/AKT/mTOR pathway 被引量:3
7
作者 Xin Sun Li-Yi Huang +8 位作者 Hong-Xia Pan Li-Juan Li Lu Wang Gai-Qin Pei Yang Wang Qing Zhang Hong-Xin Cheng Cheng-Qi He Quan Wei 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1067-1075,共9页
Although many therapeutic interventions have shown promise in treating spinal cord injury, focusing on a single aspect of repair cannot achieve successful and functional regeneration in patients following spinal cord ... Although many therapeutic interventions have shown promise in treating spinal cord injury, focusing on a single aspect of repair cannot achieve successful and functional regeneration in patients following spinal cord injury. In this study, we applied a combinatorial approach for treating spinal cord injury involving neuroprotection and rehabilitation, exploiting cell transplantation and functional sensorimotor training to promote nerve regeneration and functional recovery. Here, we used a mouse model of thoracic contusive spinal cord injury to investigate whether the combination of bone marrow mesenchymal stem cell transplantation and exercise training has a synergistic effect on functional restoration. Locomotor function was evaluated by the Basso Mouse Scale, horizontal ladder test, and footprint analysis. Magnetic resonance imaging, histological examination, transmission electron microscopy observation, immunofluorescence staining, and western blotting were performed 8 weeks after spinal cord injury to further explore the potential mechanism behind the synergistic repair effect. In vivo, the combination of bone marrow mesenchymal stem cell transplantation and exercise showed a better therapeutic effect on motor function than the single treatments. Further investigations revealed that the combination of bone marrow mesenchymal stem cell transplantation and exercise markedly reduced fibrotic scar tissue, protected neurons, and promoted axon and myelin protection. Additionally, the synergistic effects of bone marrow mesenchymal stem cell transplantation and exercise on spinal cord injury recovery occurred via the PI3 K/AKT/mTOR pathway. In vitro, experimental evidence from the PC12 cell line and primary cortical neuron culture also demonstrated that blocking of the PI3 K/AKT/mTOR pathway would aggravate neuronal damage. Thus, bone marrow mesenchymal stem cell transplantation combined with exercise training can effectively restore motor function after spinal cord injury by activating the PI3 K/AKT/mTOR pathway. 展开更多
关键词 axon growth bone marrow mesenchymal stem cell exercise training mTOR neuroprotection NEUROTROPHIN REMYELINATION scar formation spinal cord injury synaptic plasticity
下载PDF
Mammalian Ste20-like kinase 1 inhibition as a cellular mediator of anoikis in mouse bone marrow mesenchymal stem cells
8
作者 Tao Zhang Qian Zhang Wan-Cheng Yu 《World Journal of Stem Cells》 SCIE 2023年第3期90-104,共15页
BACKGROUND The low survival rate of mesenchymal stem cells(MSCs)caused by anoikis,a form of apoptosis,limits the therapeutic efficacy of MSCs.As a proapoptotic molecule,mammalian Ste20-like kinase 1(Mst1)can increase ... BACKGROUND The low survival rate of mesenchymal stem cells(MSCs)caused by anoikis,a form of apoptosis,limits the therapeutic efficacy of MSCs.As a proapoptotic molecule,mammalian Ste20-like kinase 1(Mst1)can increase the production of reactive oxygen species(ROS),thereby promoting anoikis.Recently,we found that Mst1 inhibition could protect mouse bone marrow MSCs(mBMSCs)from H 2 O 2-induced cell apoptosis by inducing autophagy and reducing ROS production.However,the influence of Mst1 inhibition on anoikis in mBMSCs remains unclear.AIM To investigate the mechanisms by which Mst1 inhibition acts on anoikis in isolated mBMSCs.METHODS Poly-2-hydroxyethyl methacrylate-induced anoikis was used following the silencing of Mst1 expression by short hairpin RNA(shRNA)adenovirus transfection.Integrin(ITGs)were tested by flow cytometry.Autophagy and ITGα5β1 were inhibited using 3-methyladenine and small interfering RNA,respe-ctively.The alterations in anoikis were measured by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling and anoikis assays.The levels of the anoikis-related proteins ITGα5,ITGβ1,and phospho-focal adhesion kinase and the activation of caspase 3 and the autophagy-related proteins microtubules associated protein 1 light chain 3 II/I,Beclin1 and p62 were detected by Western blotting.RESULTS In isolated mBMSCs,Mst1 expression was upregulated,and Mst1 inhibition significantly reduced cell apoptosis,induced autophagy and decreased ROS levels.Mechanistically,we found that Mst1 inhibition could upregulate ITGα5 and ITGβ1 expression but not ITGα4,ITGαv,or ITGβ3 expression.Moreover,autophagy induced by upregulated ITGα5β1 expression following Mst1 inhibition played an essential role in the protective efficacy of Mst1 inhibition in averting anoikis.CONCLUSION Mst1 inhibition ameliorated autophagy formation,increased ITGα5β1 expression,and decreased the excessive production of ROS,thereby reducing cell apoptosis in isolated mBMSCs.Based on these results,Mst1 inhibition may provide a promising strategy to overcome anoikis of implanted MSCs. 展开更多
关键词 Mouse bone marrow mesenchymal stem cell Mammalian sterile 20-like kinase 1 ANOIKIS Integrin Autophagy Reactive oxygen species
下载PDF
Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells:Advances and challenges
9
作者 Li-Yi Huang Xin Sun +3 位作者 Hong-Xia Pan Lu Wang Cheng-Qi He Quan Wei 《World Journal of Stem Cells》 SCIE 2023年第5期385-399,共15页
Spinal cord injury(SCI)is a devastating condition with complex pathological mechanisms that lead to sensory,motor,and autonomic dysfunction below the site of injury.To date,no effective therapy is available for the tr... Spinal cord injury(SCI)is a devastating condition with complex pathological mechanisms that lead to sensory,motor,and autonomic dysfunction below the site of injury.To date,no effective therapy is available for the treatment of SCI.Recently,bone marrow-derived mesenchymal stem cells(BMMSCs)have been considered to be the most promising source for cellular therapies following SCI.The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI.In this work,we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects:Neuroprotection,axon sprouting and/or regeneration,myelin regeneration,inhibitory microenvironments,glial scar formation,immunomodulation,and angiogenesis.Additionally,we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models. 展开更多
关键词 Spinal cord injury bone marrow derived mesenchymal stem cells Neuroprotection AXON MYELIN Inhibitory microenvironment
下载PDF
Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy 被引量:16
10
作者 Fei Yin Chunyang Meng +5 位作者 Rifeng Lu Lei Li Ying Zhang Hao Chen Yonggang Qin Li Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第18期1665-1671,共7页
Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are kno... Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as- sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur- thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro- filament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes- enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells spinal cord ischemia/reperfusioninjury axonal growth AUTOPHAGY REPAIR NSFC grant neural regeneration
下载PDF
Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury 被引量:10
11
作者 Chun Zhang Xijing He +1 位作者 Haopeng Li Guoyu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第11期965-974,共10页
As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment op... As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury stem cells chondroitin sulfate proteoglycans ASTROCYTES glial scar chondroitinase ABC bone marrow mesenchymal stem cells TRANSPLANTATION chemicalbarrier NEUROREGENERATION
下载PDF
miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells 被引量:12
12
作者 Qi Guo Yusi Chen +2 位作者 Lijuan Guo Tiejian Jiang Zhangyuan Lin 《Bone Research》 SCIE CAS CSCD 2016年第2期110-118,共9页
Age-related osteoporosis is associated with the reduced capacity of bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts instead of adipocytes. However, the molecular mechanisms that decide t... Age-related osteoporosis is associated with the reduced capacity of bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts instead of adipocytes. However, the molecular mechanisms that decide the fate of BMSCs remain unclear. In our study, microRNA-23a, and microRNA-23b (miR-23a/b) were found to be markedly downregulated in BMSCs of aged mice and humans. The overexpression of miR-23a/b in BMSCs promoted osteogenic differentiation, whereas the inhibition of miR-23a/b increased adipogenic differentiation. Transmembrane protein 64 (Tmem64), which has expression levels inversely related to those of miR-23a/b in aged and young mice, was identified as a major target of miR-23a/b during BMSC differentiation. In conclusion, our study suggests that miR-23a/b has a critical role in the regulation of mesenchymal lineage differentiation through the suppression of Tmem64. 展开更多
关键词 BMSCS bone miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells stem
下载PDF
Effects of heme oxygenase-1-modified bone marrow mesenchymal stem cells on microcirculation and energy metabolism following liver transplantation 被引量:9
13
作者 Liu Yang Zhong-Yang Shen +5 位作者 Rao-Rao Wang Ming-Li Yin Wei-Ping Zheng Bin Wu Tao Liu Hong-Li Song 《World Journal of Gastroenterology》 SCIE CAS 2017年第19期3449-3467,共19页
AIM To investigate the effects of heme oxygenase-1(HO-1)-modified bone marrow mesenchymal stem cells(BMMSCs)on the microcirculation and energy metabolism of hepatic sinusoids following reduced-size liver transplantati... AIM To investigate the effects of heme oxygenase-1(HO-1)-modified bone marrow mesenchymal stem cells(BMMSCs)on the microcirculation and energy metabolism of hepatic sinusoids following reduced-size liver transplantation(RLT)in a rat model.METHODS BMMSCs were isolated and cultured in vitro using an adherent method,and then transduced with HO-1-bearing recombinant adenovirus to construct HO-1/BMMSCs.A rat acute rejection model following 50%RLT was established using a two-cuff technique.Recipients were divided into three groups based on the treatment received:normal saline(NS),BMMSCs and HO-1/BMMSCs.Liver function was examined at six time points.The levels of endothelin-1(ET-1),endothelial nitric-oxide synthase(e NOS),inducible nitric-oxide synthase(i NOS),nitric oxide(NO),and hyaluronic acid(HA)were detected using an enzyme-linked immunosorbent assay.The portal vein pressure(PVP)was detected by Power Lab ML880.The expressions of ET-1,i NOS,e NOS,and von Willebrand factor(v WF)protein in the transplanted liver were detected using immunohistochemistry and Western blotting.ATPase in the transplanted liver was detected by chemical colorimetry,and the ultrastructural changes were observed under a transmission electron microscope.RESULTS HO-1/BMMSCs could alleviate the pathological changes and rejection activity index of the transplanted liver,and improve the liver function of rats following 50%RLT,with statistically significant differences compared with those of the NS group and BMMSCs group(P<0.05).In term of the microcirculation of hepatic sinusoids:The PVP on POD7 decreased significantly in the HO-1/BMMSCs and BMMSCs groups compared with that of the NS group(P<0.01);HO-1/BMMSCs could inhibit the expressions of ET-1 and i NOS,increase the expressions of e NOS and inhibit amounts of NO production,and maintain the equilibrium of ET-1/NO(P<0.05);and HO-1/BMMSCs increased the expression of v WF in hepatic sinusoidal endothelial cells(SECs),and promoted the degradation of HA,compared with those of the NS group and BMMSCs group(P<0.05).In term of the energy metabolism of the transplanted liver,HO-1/BMMSCs repaired the damaged mitochondria,and improved the activity of mitochondrial aspartate aminotransferase(ASTm)and ATPase,compared with the other two groups(P<0.05).CONCLUSION HO-1/BMMSCs can improve the microcirculation of hepatic sinusoids significantly,and recover the energy metabolism of damaged hepatocytes in rats following RLT,thus protecting the transplanted liver. 展开更多
关键词 Reduced-size liver transplantation bone marrow mesenchymal stem cells MICROCIRCULATION Heme oxygenase-1 Energy metabolism
下载PDF
Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury 被引量:6
14
作者 Fatemeh Anbari Mohammad Ali Khalili +4 位作者 Ahmad Reza Bahrami Arezoo Khoradmehr Fatemeh Sadeghian Farzaneh Fesahat Ali Nabi 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第9期919-923,共5页
To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumat... To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells traumatic brain injury intravenous administration cell differentiation neurologic function cerebral cortex RATS neural regeneration
下载PDF
Combining acellular nerve allografts with brainderived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone 被引量:6
15
作者 Yanru Zhang Hui Zhang +2 位作者 Gechen Zhang Ka Ka Wenhua Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第20期1814-1819,共6页
In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bo... In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchyrnal stem cells group. Results showed that at 8 weeks after bridging, sciatic functional index, triceps wet weight recovery rate, myelin thickness, and number of myelinated nerve fibers were significantly changed in the three groups. Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups. Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects. The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation. 展开更多
关键词 nerve regeneration peripheral nerve regeneration peripheral nerve injury chemicallyextracted acellular nerve brain-derived neurotrophic factor bone marrow mesenchymal stem cells nerve tissue engineering neural regeneration
下载PDF
Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury 被引量:5
16
作者 Zhiyuan Li Zhanxiu Zhang +3 位作者 Lili Zhao Hui Li Suxia Wang Yong Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第8期806-814,共9页
We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord trans... We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was signiifcantly enhanced in the model group. Af-ter 8 weeks, the number of horseradish peroxidase-labeled nerve ifbers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and signiifcantly higher than in the model group. The newly formed nerve ifbers and myelinated ner ve ifbers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group. 展开更多
关键词 nerve regeneration spinal cord injury bone marrow mesenchymal stem cells Nogo-66receptor RNA interference horseradish peroxidase BRDU gene silencing neural regeneration
下载PDF
The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells 被引量:6
17
作者 Jiang Tan Hui Huang +4 位作者 Wei Huang Lin Li Jianhua Guo Baiqu Huang Jun Lu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2008年第10期585-593,共9页
Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the ... Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem cells, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide histone H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways, cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency. 展开更多
关键词 human bone marrow mesenchymal stem cells (MSCs) H3-Lys9 acetylation H3-Lys9 dimethylation CHIP-ON-CHIP MICROARRAY
下载PDF
Netrin-1 overexpression in bone marrow mesenchymal stem cells promotes functional recovery in a rat model of peripheral nerve injury 被引量:6
18
作者 Xianjin Ke Qian Li +4 位作者 Li Xu Ying Zhang Dongmei Li Jianhua Ma Xiaoming Mao 《The Journal of Biomedical Research》 CAS CSCD 2015年第5期380-389,共10页
Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been developed as a new method of treat- ing diseases of the peripheral nervous system. While netrin-1 is a critical molecule for axonal path finding... Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been developed as a new method of treat- ing diseases of the peripheral nervous system. While netrin-1 is a critical molecule for axonal path finding and nerve growth, it may also affect vascular network formation. Here, we investigated the effect of transplanting BMSCs that produce netrin-1 in a rat model of sciatic nerve crush injury. We introduced a sciatic nerve crush injury, and then injected 1×10^6 BMSCs infected by a recombinant adenovirus expressing netrin-1 Ad5-Netrin-l-EGFP or culture medium into the injured part in the next day. At day 7, 14 and 28 after injection, we measured motor nerve con- duction and detected mRNA expressions of netrin-1 receptors UNC5B and Deleted in Colorectal Cancer (DCC), and neurotrophic factors brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) by real-time PCR. We also detected protein expressions of BDNF and NGF by Western blotting assays and examined BMSCs that incorporated into myelin and vascellum. The results showed that BMSCs infected by AdS-Netrin- 1-EGFP significantly improved the function of the sciatic nerve, and led to increased expression of BDNF and NGF (P〈0.05). Moreover, 28 days after injury, more Schwann cells were found in BMSCs infected by AdS- Netrin-l-EGFP compared to control BMSCs. In conclusion, transplantation of BMSCs that produce netrin-1 improved the function of the sciatic nerve after injury. This method may be a new treatment of nerve injury. 展开更多
关键词 bone marrow mesenchymal stem cells NETRIN-1 UNCSB Deleted in Colorectal Cancer brain-derivedneurotrophic factor nerve growth factor
下载PDF
Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury 被引量:5
19
作者 Shaoqiang Chen Bilian Wu Jianhua Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第19期1445-1453,共9页
Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3 5 bone marrow mesenchymal stem cells were... Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3 5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1-5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxytase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells spinal cord injury choline acetyltransferase glutamic aciddecarboxylase SYNAPSINS neural regeneration
下载PDF
Protective Effects of Trimetazidine on Bone Marrow Mesenchymal Stem Cells Viability in an ex vivo Model of Hypoxia and in vivo Model of Locally Myocardial Ischemia 被引量:8
20
作者 徐红新 朱刚艳 田毅浩 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第1期36-41,共6页
Bone marrow mesenchymal stem cells (MSCs) have shown potential for cardiac repair following myocardial injury,but this approach is limited by their poor viability after transplantation.The present study was to investi... Bone marrow mesenchymal stem cells (MSCs) have shown potential for cardiac repair following myocardial injury,but this approach is limited by their poor viability after transplantation.The present study was to investigate whether trimetazidine (TMZ) could improve survival of MSCs in an ex vitro model of hypoxia,as well as survival,differentiation,and subsequent activities of transplanted MSCs in rat hearts with acute myocardial infarction (AMI).MSCs at passage 3 were examined for their viability and apoptosis under a transmission electron microscope,and by using flow cytometry following culture in serumfree medium and exposure to hypoxia (5% CO2,95% N2) for 12 h with or without TMZ.Thirty Wistar rats were divided into 3 groups (n=10 each group),including groupⅠ(AMI control),groupⅡ (MSCs transplantation alone),and group Ⅲ (TMZ+MSCs).Rat MSCs (4×107) were injected into peri-infarct myocardium (MSCs group and TMZ+MSCs group) 30 min after coronary artery ligation.The rats in TMZ+MSCs group were additionally fed on TMZ (2.08 mg?kg-1?day-1) from day 3 before AMI to day 28 after AMI.Cardiac structure and function were assessed by echocardiography at 28th day after transplantation.Blood samples were collected before the start of TMZ therapy (baseline),and 24 and 48 h after AMI,and inflammatory cytokines (CRP,TNF-α) were measured.Then the sur-vival and differentiation of transplanted cells in vivo were detected by immunofluorescent staining.The cellular apoptosis in the peri-infarct region was detected by using TUNEL assay.Furthermore,apoptosis-related proteins (Bcl-2,Bax) within the post-infarcted myocardium were detected by using Western blotting.In hypoxic culture,the TMZ-treated MSCs displayed a two-fold decrease in apoptosis under serumfree medium and hypoxia environment.In vivo,cardiac infarct size was significantly reduced,and cardiac function significantly improved in MSCs and TMZ+MSCs groups as compared with those in the AMI control group.Combined treatment of TMZ with MSCs implantation demonstrated further decreased MSCs apoptosis,further increased MSCs viability,further decreased infarct size,and further improved cardiac function as compared with MSCs alone.The baseline levels of inflammatory cyto-kines (CRP,TNF-α) had no significant difference among the groups.In contrast,all parameters at 24 h were lower in TMZ+MSCs group than those in MSCs group.Furthermore,Western blotting indicated that the expression of antiapoptotic protein Bcl-2 was upregulated,while the proapoptotic protein Bax was down-regulated in the TMZ+MSCs group,compared with that in the MSCs group.It is suggested that implantation of MSCs combined with TMZ treatment is superior to MSCs monotherapy for MSCs viability and cardiac function recovery. 展开更多
关键词 TRIMETAZIDINE bone marrow mesenchymal stem cells VIABILITY myocardial ischemia
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部