Objective To investigate the influence of sodium fluoride(NaF)on alkaline phosphatase(ALP)activity and bone gla protein(BGP)synthesis in yellow ligament cells from different surgical simples in vitro.Methods The human...Objective To investigate the influence of sodium fluoride(NaF)on alkaline phosphatase(ALP)activity and bone gla protein(BGP)synthesis in yellow ligament cells from different surgical simples in vitro.Methods The human ligament cells展开更多
Background Bone morphogenetic protein (BMP)-2, alkaline phosphatase (ALP), and collagen type I are known to play a critical role in the process of bone remodeling. However, the relationship between mechanical stra...Background Bone morphogenetic protein (BMP)-2, alkaline phosphatase (ALP), and collagen type I are known to play a critical role in the process of bone remodeling. However, the relationship between mechanical strain and the expression of BMP-2, ALP, and COL-I in osteoblasts was still unknown. The purpose of this study was to investigate the effects of different magnitudes of mechanical strain on osteoblast morphology and on the expression of BMP-2, ALP, and COL-I. Methods Osteoblast-like cells were flexed at four deformation rates (0, 6%, 12%, and 18% elongation). The expression of BMP-2 mRNA, ALP, and COL-I in osteoblast-like cells were determined by real-time quantitative reverse transcription polymerase chain reaction, respectively. The results were subjected to analysis of variance (ANOVA) using SPSS 13.0 statistical software. Results The cells changed to fusiform and grew in the direction of the applied strain after the mechanical strain was loaded. Expression level of the BMP-2, ALP, and COL-I increased magnitude-dependently with mechanical loading in the experimental groups, and the 12% elongation group had the highest expression (P 〈0.05). Conclusion Mechanical strain can induce morphological change and a magnitude-dependent increase in the expression of BMP-2, ALP, and COL-I mRNA in osteoblast-like cells, which might influence bone remodeling in orthodontic treatment.展开更多
Alkaline phosphatase(ALP)flare has been reported to occur during cancer treatment as a favorable event,particularly in the presence of bone metastasis.There have been only a few reports in lung cancer and associated r...Alkaline phosphatase(ALP)flare has been reported to occur during cancer treatment as a favorable event,particularly in the presence of bone metastasis.There have been only a few reports in lung cancer and associated radiographic findings have seldom been described.The authors observed ALP flare in a female patient with lung adenocarcinoma soon after the initiation of gefitinib.Moreover,on computed tomography,metastatic lesions of the rib and thoracic spine showed marked hyperostosis,with sizes larger than the original bone structure,suggesting efficacy of gefitinib.The significance of such hyperostosis should be elucidated.展开更多
文摘Objective To investigate the influence of sodium fluoride(NaF)on alkaline phosphatase(ALP)activity and bone gla protein(BGP)synthesis in yellow ligament cells from different surgical simples in vitro.Methods The human ligament cells
文摘Background Bone morphogenetic protein (BMP)-2, alkaline phosphatase (ALP), and collagen type I are known to play a critical role in the process of bone remodeling. However, the relationship between mechanical strain and the expression of BMP-2, ALP, and COL-I in osteoblasts was still unknown. The purpose of this study was to investigate the effects of different magnitudes of mechanical strain on osteoblast morphology and on the expression of BMP-2, ALP, and COL-I. Methods Osteoblast-like cells were flexed at four deformation rates (0, 6%, 12%, and 18% elongation). The expression of BMP-2 mRNA, ALP, and COL-I in osteoblast-like cells were determined by real-time quantitative reverse transcription polymerase chain reaction, respectively. The results were subjected to analysis of variance (ANOVA) using SPSS 13.0 statistical software. Results The cells changed to fusiform and grew in the direction of the applied strain after the mechanical strain was loaded. Expression level of the BMP-2, ALP, and COL-I increased magnitude-dependently with mechanical loading in the experimental groups, and the 12% elongation group had the highest expression (P 〈0.05). Conclusion Mechanical strain can induce morphological change and a magnitude-dependent increase in the expression of BMP-2, ALP, and COL-I mRNA in osteoblast-like cells, which might influence bone remodeling in orthodontic treatment.
文摘Alkaline phosphatase(ALP)flare has been reported to occur during cancer treatment as a favorable event,particularly in the presence of bone metastasis.There have been only a few reports in lung cancer and associated radiographic findings have seldom been described.The authors observed ALP flare in a female patient with lung adenocarcinoma soon after the initiation of gefitinib.Moreover,on computed tomography,metastatic lesions of the rib and thoracic spine showed marked hyperostosis,with sizes larger than the original bone structure,suggesting efficacy of gefitinib.The significance of such hyperostosis should be elucidated.