Introduction: Pseudarthrosis (PSA) of the diaphysis of long bones still remains a current problem, despite improvements in the treatment of these fractures. Our study aims to study the epidemiological and therapeutic ...Introduction: Pseudarthrosis (PSA) of the diaphysis of long bones still remains a current problem, despite improvements in the treatment of these fractures. Our study aims to study the epidemiological and therapeutic aspects of PSA of the diaphysis of long bones. Method: This retrospective work concerns 30 cases of non-union of the diaphysis of long bones treated in the orthopedic and trauma surgery department at Donka National Hospital, during a period of 18 months from January 1, 2019 to June 30, 2020. Results: We recruited 30 patients, 80% of whom were male, with an average age of 39.9 years. Public road accidents (AVP) represented the main cause of fractures of the diaphysis of long bones 87%, they were open in 25 cases or 83%. The fractures were located in the middle 1/3 of the diaphysis of the long bones in 50% of cases. Treatment of initial fractures was traditional in 21 cases, orthopedic in 2 cases and surgical in 7 cases. It was aseptic nonunion in 28 cases (93%) and septic nonunion in 2 cases. They were hypertrophic in 7 cases, slightly hypertrophic in 5 cases, oligotrophic in 11 cases, atrophic in 6 cases and with bone defect in 1 case. The treatment was based on osteosynthesis including 16 cases of screwed “PV” plate: 7 cases of centromedullary “ECM” nailing, 2 cases of external fixator, 1 case of broaching and 4 cases of Plastering. The results according to ASAMI criteria on an anatomical level were excellent in 19 cases, good in 3 cases and poor in 3 cases, with a union rate of 76%. And 5 patients undergoing consolidation. Conclusion: Based on the literature data and the experience of our department, the true treatment of PSA requires correct management of the initial fracture without forgetting the interest in preventing AVP which appears to be an element essential, making it possible to reduce the incidence of fractures of the diaphysis.展开更多
After Hurricane Katrina in 2005,literary works related to such a crisis sprouted the southern America,which are known as Post-Katrina Literature.This thesis,taking Salvage the Bones and The Not Yet as examples,scrutin...After Hurricane Katrina in 2005,literary works related to such a crisis sprouted the southern America,which are known as Post-Katrina Literature.This thesis,taking Salvage the Bones and The Not Yet as examples,scrutinizes how writers respond to the Post-Katrina environmental crisis in different ways.In Salvage the Bones,Jesmyn Ward employs a biographical genre to record the Katrina disaster,thereby,writings serving as a way of healing the psychic trauma of the writer herself;and in The Not Yet,Moira Crone presents a post-natural world by the employment of the Cli-Fi genre.Both writers enrich the tradition of Southern literature as well as American eco-literature.展开更多
Objective: To investigate the effectiveness of the plate screw internal fixation technique on the clinical outcomes of patients with traumatic fractures of long bones in the lower extremities. Methods: From January 20...Objective: To investigate the effectiveness of the plate screw internal fixation technique on the clinical outcomes of patients with traumatic fractures of long bones in the lower extremities. Methods: From January 2022 to December 2023, 70 patients with traumatic fractures of long bones in the lower extremities were admitted to the hospital and randomly divided into two groups: the control group and the observation group, each consisting of 35 cases. The control group underwent traditional closed interlocking intramedullary nailing, while the observation group received internal fixation with steel plates and screws. Relevant surgical indicators, treatment effectiveness, and postoperative complication rates were compared between the two groups. Results: The observation group exhibited significantly short surgical duration (80.65 ± 5.01 vs. 88.36 ± 5.26 minutes), fracture healing time (13.27 ± 0.32 vs. 15.52 ± 0.48 weeks), and hospitalization days (10.49 ± 1.13 vs. 16.57 ± 1.15 days) compared to the control group (P = 0.000). The effective treatment rate was significantly higher in the observation group (29/82.86%) than in the control group (21/60.00%), with a significant difference observed (χ2 = 4.480, P = 0.034). Additionally, the complication rate in the observation group (2/5.71%) was significantly lower than that in the control group (8/22.86%), with a correlated difference (χ2 = 4.200, P = 0.040). Conclusion: The plate screw internal fixation technique demonstrates significant clinical efficacy in treating traumatic fractures of long bones in the lower extremities. It improves the healing rate, reduces complications, and represents a safe and effective treatment strategy worthy of widespread use and application.展开更多
Objective:To investigate the effect of alendronate on bone mass and organ pathology of ovariectomized mice.Methods:Thirty SPF grade C57 female mice were randomly divided into three groups(n=10):Sham operation group(Sh...Objective:To investigate the effect of alendronate on bone mass and organ pathology of ovariectomized mice.Methods:Thirty SPF grade C57 female mice were randomly divided into three groups(n=10):Sham operation group(Sham),ovariectomized group(OVX)and ovariectomized+alendronate group(ALN).The sodium alendronate was injected subcutaneously at 400μg/kg twice a week in the ALN group.The equal volume of normal saline was injected subcutaneously twice a week in the SHAM group and OVX group.After 12 weeks of drug administration,the samples were taken.The organ coefficients,main organ pathological sections,and bone histopathological sections were observed,and the micro CT,L4 biomechanics and serum biochemical indicators were analyzed.Results:The uterine coefficient of Sham group was(0.0054±0.0007)significantly higher than that of OVX group(0.0026±0.0009)and ALN group(0.0025±0.0007),and the difference was statistically significant(P<0.05).No obvious lesions or toxic or side effects were observed in the main organs.Compared with the OVX group,the ALN group with decalcified sections of bone tissue had compact trabecular structure and fewer adipocytes.Micro-CT results showed that the Tb.BMD,Tb.N,Tb.Th and Tb.BV/TV values of the ALN group were significantly increased compared with those of the OVX group,but the Tb.Sp value was significantly decreased,and the difference was statistically significant(P<0.05).In L4 vertebral body biomechanics,the elastic modulus(50.29±13.43)and maximum load number(29.83±4.92)of ALN group were significantly higher than those of OVX group(14.77±3.12)and maximum load number(11.57±3.18),and the difference was statistically significant(P<0.05).Compared with the OVX group,the serum OCN and PINP indicators of bone formation in the ALN group were increased,while the bone resorption indicators TRACP-5b and CTX-I were decreased,with statistical significance(P<0.05).Conclusion:Alendronate sodium improves bone quality by increasing bone density,improving bone microstructure,increasing bone strength,promoting bone formation and inhibiting bone resorption,without obvious toxic and side effects on organs.展开更多
Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed th...Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development.Osteogenesis is the process by which new bones are formed;it also aids in bone remodeling.Wnt/β-catenin and bone morphogenetic protein(BMP)signaling pathways are involved in many cellular processes and considered to be essential for life.Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body.Recent studies have indicated that these two signaling pathways contribute to osteogenic differen-tiation.Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway.Here,we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation,emphasizing the canonical pathways.This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch-and extracellular-regulated kinases in osteogenic differentiation and bone development.展开更多
BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To e...BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.展开更多
This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instan...This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.展开更多
BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,neces...BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.展开更多
BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or to...BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process.展开更多
The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorat...The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorating postmenopausal osteoporosis in a rat model established using bilateral ovariectomy.After 3 months of FM(containing vitamin D,and casein phosphopeptides,1000 mg Ca/100 g)or control milk(110 mg Ca/100 g milk)supplementation,bone changes were assessed using dual-energy X-ray absorptiometry,microcomputed tomography,and bone biomechanical testing.The results revealed that FM can regulate bone metabolism and gut microbiota composition,which act on bone metabolism through pathways associated with steroid hormone biosynthesis,relaxin signaling,serotonergic synapse,and unsaturated fatty acid biosynthesis.Furthermore,FM administration significantly increased bone mineral content and density in the lumbar spine and femur,as well as femoral compressive strength,while improving femoral trabecular bone parameters and microarchitecture.Mechanistically,we found that the effects may be due to increased levels of estrogen,bone formation marker osteocalcin,and procollagen typeⅠN-propeptide,and decreased expression of the bone resorption marker C-telopiptide and tartrate-resistant acid phosphatase 5b.Overall,the findings suggest that FM is a potential alternative therapeutic option for ameliorating postmenopausal osteoporosis.展开更多
Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanis...Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanism of Andrias davidianus bone peptides(ADBP)on HUA-induced kidney damage.In the present study,we generated the standard ADBP which contained high hydrophobic amino acid and low molecular peptide contents.In vitro results found that ADBP protected uric acid(UA)-induced HK-2 cells from damage by modulating urate transporters and antioxidant defense.In vivo results indicated that ADBP effectively ameliorated renal injury in HUA-induced CKD mice,evidenced by a remarkable decrease in serum UA,creatinine and blood urea nitrogen,improving kidney UA excretion,antioxidant defense and histological kidney deterioration.Metabolomic analysis highlighted 14 metabolites that could be selected as potential biomarkers and attributed to the amelioration effects of ADBP on CKD mice kidney dysfunction.Intriguingly,ADBP restored the gut microbiome homeostasis in CKD mice,especially with respect to the elevated helpful microbial abundance,and the decreased harmful bacterial abundance.This study demonstrated that ADBP displayed great nephroprotective effects,and has great promise as a food or functional food ingredient for the prevention and treatment of HUA-induced CKD.展开更多
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)...Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.展开更多
BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patie...BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain.展开更多
The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical ...The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration.Inspired by bioelectricity,electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix,thereby accelerating bone regeneration.With ongoing advances in biomaterials and energy-harvesting techniques,electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue.In this review,we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Next,we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering.Finally,we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.展开更多
Apoptosis is crucial for tissue homeostasis and organ development.In bone,apoptosis is recognized to be a main fate of osteoblasts,yet the relevance of this process remains underexplored.Using our murine model with in...Apoptosis is crucial for tissue homeostasis and organ development.In bone,apoptosis is recognized to be a main fate of osteoblasts,yet the relevance of this process remains underexplored.Using our murine model with inducible Caspase 9,the enzyme that initiates intrinsic apoptosis,we triggered apoptosis in a proportion of mature osteocalcin(OCN^(+))osteoblasts and investigated the impact on postnatal bone development.展开更多
BACKGROUND:The widespread use of recreational drugs has raised concerns regarding their eff ects on various organ systems.The use of cannabis and opioids in chronic pain management increases their prevalence among pat...BACKGROUND:The widespread use of recreational drugs has raised concerns regarding their eff ects on various organ systems.The use of cannabis and opioids in chronic pain management increases their prevalence among patients with musculoskeletal conditions whose bone health may already be compromised.This article aims to review the pathophysiology and toxic eff ects of recreational drug use on musculoskeletal health to establish appropriate pain regimens for patients with substance use.METHODS:Medical literature published from 1970 until 2022 was identifi ed utilizing MEDLINE/PubMed and the Cochrane Library.In addition to the databases,references were obtained through the use of reference lists of published articles identifi ed by the aforementioned databases.The initial search terms included opioids,inhalants,hallucinogens,cannabis,stimulants,and bone health.There were no methodological limitations in relation to the initial acquisition and analysis of data.RESULTS:A total of 55 research articles were included in this review.Cannabis,stimulants,opioids,and inhalants impact bone maintenance,specifically osteoblast and osteoclast activity,as well as impede hormone production.These substances inhibit bone remodeling and development,manifesting as lower bone mineral density and increased fracture risk in chronic users.CONCLUSION:Although the current literature suggests a deleterious effect of recreational drugs on bone health and musculoskeletal disease,further research is warranted to evaluate the clinical effects of long-term substance use.The evaluation of such effects will aid in establishing appropriate pain regimens,as well as appropriate screening and treatment plans for recreational drug users.展开更多
Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have bee...Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have been recognized for their biocompatibility and biodegradability.However,their susceptibility to rapid corrosion and degradation has garnered notable research interest in bone tissue engineering(BTE),particularly in the development of Mg-incorporated biocomposite scaffolds.These scaffolds gradually release Mg2+,which enhances immunomodulation,osteogenesis,and angiogenesis,thus facilitating effective bone regeneration.This review presents myriad fabrication techniques used to create Mg-incorporated biocomposite scaffolds,including electrospinning,three-dimensional printing,and sol-gel synthesis.Despite these advancements,the application of Mg-incorporated biocomposite scaffolds faces challenges such as controlling the degradation rate of Mg and ensuring mechanical stability.These limitations highlight the necessity for ongoing research aimed at refining fabrication techniques to better regulate the physicochemical and osteogenic properties of scaffolds.This review provides insights into the potential of Mg-incorporated biocomposite scaffolds for BTE and the challenges that need to be addressed for their successful translation into clinical applications.展开更多
1. Introduction The tegmental wall of the tympanic cavity is a thin plate of the temporal bone that separates the middle cranial fossa(MCF) from the ear. This anatomical region consists of two areas: an anterior one, ...1. Introduction The tegmental wall of the tympanic cavity is a thin plate of the temporal bone that separates the middle cranial fossa(MCF) from the ear. This anatomical region consists of two areas: an anterior one, comprised of the tegmen tympani(To′th et al., 2007), and a posterior one, formed by the tegmen antri and the tegmen mastoideum(Makki et al., 2011). In some patients, the tegmental region of the temporal bone can be interrupted, causing a tegmen defect(TD). A TD is sometimes associated with a meningoencephalic herniation(MEH), in which brain tissue herniates through a TD.展开更多
Traditional designs and developments of bone biomaterials mostly concentrate on the positive regulation of osteoblast lineage cells,but often ignore the importance of immune responses and the equilibrium between bone ...Traditional designs and developments of bone biomaterials mostly concentrate on the positive regulation of osteoblast lineage cells,but often ignore the importance of immune responses and the equilibrium between bone resorption mediated by osteoclasts and bone formation mediated by osteoblasts.Immune dysregulation is associated with an imbalance between pro-inflammatory and anti-inflammatory processes,which may influence the efficacy of bone therapy.Therefore,implanted biomaterials should appropriately and precisely modulate subsequent immune responses.Magnesium(Mg)has been used to fabricate various Mg alloys for bone repair because of its favorable attributes such as osteogenic potential,immune regulation characteristics,biodegradability,and biocompatibility.Various basic research and clinical trials have been already conducted in many countries to explore the physical properties of Mg-containing implants and their clinical outcomes in bone fracture and defect repair.Therefore,this review summarizes the immune response to Mg-containing implants,and further organizes the current research and development progress of Mg-containing implants.The review aims to offer an overview of the current knowledge on immunomodulation of Mg-containing implants and future challenges in their clinical application,which could provide further insight in the development of better strategies for the treatment of bone defect and fracture.展开更多
Background The effect of microbial phytase on amino acid and energy digestibility is not consistent in pigs,which may be related to the phytase dosage or the adaptation length to the diet.Therefore,an experiment was c...Background The effect of microbial phytase on amino acid and energy digestibility is not consistent in pigs,which may be related to the phytase dosage or the adaptation length to the diet.Therefore,an experiment was conducted to test the hypotheses that increasing dietary phytase after an 18-day adaptation period:1)increases nutrient and energy digestibility;2)increases plasma P,plasma inositol,and bone ash of young pigs;and 3)demonstrates that maximum phytate degradation requires more phytase than maximum P digestibility.Results Data indicated that increasing inclusion of phytase[0,250,500,1,000,2,000,and 4,000 phytase units(FTU)/kg feed]in corn-soybean meal-based diets increased apparent ileal digestibility(AID)of Trp(quadratic;P<0.05),and of Lys and Thr(linear;P<0.05),and tended to increase AID of Met(linear;P<0.10).Increasing dietary phytase also increased AID and apparent total tract digestibility(ATTD)of Ca and P(quadratic;P<0.05)and increased ATTD of K and Na(linear;P<0.05),but phytase did not influence the ATTD of Mg or gross energy.Concentrations of plasma P and bone ash increased(quadratic;P<0.05),and plasma inositol also increased(linear;P<0.05)with increasing inclusion of phytase.Reduced concentrations of inositol phosphate(IP)6 and IP5(quadratic;P<0.05),reduced IP4 and IP3(linear;P<0.05),but increased inositol concentrations(linear;P<0.05)were observed in ileal digesta as dietary phytase increased.The ATTD of P was maximized if at least 1,200 FTU/kg were used,whereas more than 4,000 FTU/kg were needed to maximize inositol release.Conclusions Increasing dietary levels of phytase after an 18-day adaptation period increased phytate and IP ester degradation and inositol release in the small intestine.Consequently,increasing dietary phytase resulted in improved digestibility of Ca,P,K,Na,and the first 4 limiting amino acids,and in increased concentrations of bone ash and plasma P and inositol.In a corn-soybean meal diet,maximum inositol release requires approximately 3,200 FTU/kg more phytase than that required for maximum P digestibility.展开更多
文摘Introduction: Pseudarthrosis (PSA) of the diaphysis of long bones still remains a current problem, despite improvements in the treatment of these fractures. Our study aims to study the epidemiological and therapeutic aspects of PSA of the diaphysis of long bones. Method: This retrospective work concerns 30 cases of non-union of the diaphysis of long bones treated in the orthopedic and trauma surgery department at Donka National Hospital, during a period of 18 months from January 1, 2019 to June 30, 2020. Results: We recruited 30 patients, 80% of whom were male, with an average age of 39.9 years. Public road accidents (AVP) represented the main cause of fractures of the diaphysis of long bones 87%, they were open in 25 cases or 83%. The fractures were located in the middle 1/3 of the diaphysis of the long bones in 50% of cases. Treatment of initial fractures was traditional in 21 cases, orthopedic in 2 cases and surgical in 7 cases. It was aseptic nonunion in 28 cases (93%) and septic nonunion in 2 cases. They were hypertrophic in 7 cases, slightly hypertrophic in 5 cases, oligotrophic in 11 cases, atrophic in 6 cases and with bone defect in 1 case. The treatment was based on osteosynthesis including 16 cases of screwed “PV” plate: 7 cases of centromedullary “ECM” nailing, 2 cases of external fixator, 1 case of broaching and 4 cases of Plastering. The results according to ASAMI criteria on an anatomical level were excellent in 19 cases, good in 3 cases and poor in 3 cases, with a union rate of 76%. And 5 patients undergoing consolidation. Conclusion: Based on the literature data and the experience of our department, the true treatment of PSA requires correct management of the initial fracture without forgetting the interest in preventing AVP which appears to be an element essential, making it possible to reduce the incidence of fractures of the diaphysis.
文摘After Hurricane Katrina in 2005,literary works related to such a crisis sprouted the southern America,which are known as Post-Katrina Literature.This thesis,taking Salvage the Bones and The Not Yet as examples,scrutinizes how writers respond to the Post-Katrina environmental crisis in different ways.In Salvage the Bones,Jesmyn Ward employs a biographical genre to record the Katrina disaster,thereby,writings serving as a way of healing the psychic trauma of the writer herself;and in The Not Yet,Moira Crone presents a post-natural world by the employment of the Cli-Fi genre.Both writers enrich the tradition of Southern literature as well as American eco-literature.
文摘Objective: To investigate the effectiveness of the plate screw internal fixation technique on the clinical outcomes of patients with traumatic fractures of long bones in the lower extremities. Methods: From January 2022 to December 2023, 70 patients with traumatic fractures of long bones in the lower extremities were admitted to the hospital and randomly divided into two groups: the control group and the observation group, each consisting of 35 cases. The control group underwent traditional closed interlocking intramedullary nailing, while the observation group received internal fixation with steel plates and screws. Relevant surgical indicators, treatment effectiveness, and postoperative complication rates were compared between the two groups. Results: The observation group exhibited significantly short surgical duration (80.65 ± 5.01 vs. 88.36 ± 5.26 minutes), fracture healing time (13.27 ± 0.32 vs. 15.52 ± 0.48 weeks), and hospitalization days (10.49 ± 1.13 vs. 16.57 ± 1.15 days) compared to the control group (P = 0.000). The effective treatment rate was significantly higher in the observation group (29/82.86%) than in the control group (21/60.00%), with a significant difference observed (χ2 = 4.480, P = 0.034). Additionally, the complication rate in the observation group (2/5.71%) was significantly lower than that in the control group (8/22.86%), with a correlated difference (χ2 = 4.200, P = 0.040). Conclusion: The plate screw internal fixation technique demonstrates significant clinical efficacy in treating traumatic fractures of long bones in the lower extremities. It improves the healing rate, reduces complications, and represents a safe and effective treatment strategy worthy of widespread use and application.
基金General program of National Natural Science Foundation of China(81770879)Gansu Youth Science and Technology Fund Program(20JR5RA589)Joint Service Support Force 940 Hospital Laboratory Cultivation Project(2021yxky081)。
文摘Objective:To investigate the effect of alendronate on bone mass and organ pathology of ovariectomized mice.Methods:Thirty SPF grade C57 female mice were randomly divided into three groups(n=10):Sham operation group(Sham),ovariectomized group(OVX)and ovariectomized+alendronate group(ALN).The sodium alendronate was injected subcutaneously at 400μg/kg twice a week in the ALN group.The equal volume of normal saline was injected subcutaneously twice a week in the SHAM group and OVX group.After 12 weeks of drug administration,the samples were taken.The organ coefficients,main organ pathological sections,and bone histopathological sections were observed,and the micro CT,L4 biomechanics and serum biochemical indicators were analyzed.Results:The uterine coefficient of Sham group was(0.0054±0.0007)significantly higher than that of OVX group(0.0026±0.0009)and ALN group(0.0025±0.0007),and the difference was statistically significant(P<0.05).No obvious lesions or toxic or side effects were observed in the main organs.Compared with the OVX group,the ALN group with decalcified sections of bone tissue had compact trabecular structure and fewer adipocytes.Micro-CT results showed that the Tb.BMD,Tb.N,Tb.Th and Tb.BV/TV values of the ALN group were significantly increased compared with those of the OVX group,but the Tb.Sp value was significantly decreased,and the difference was statistically significant(P<0.05).In L4 vertebral body biomechanics,the elastic modulus(50.29±13.43)and maximum load number(29.83±4.92)of ALN group were significantly higher than those of OVX group(14.77±3.12)and maximum load number(11.57±3.18),and the difference was statistically significant(P<0.05).Compared with the OVX group,the serum OCN and PINP indicators of bone formation in the ALN group were increased,while the bone resorption indicators TRACP-5b and CTX-I were decreased,with statistical significance(P<0.05).Conclusion:Alendronate sodium improves bone quality by increasing bone density,improving bone microstructure,increasing bone strength,promoting bone formation and inhibiting bone resorption,without obvious toxic and side effects on organs.
基金Indian Council of Medical Research,2020-0282/SCR/ADHOC-BMSDepartment of Science and Technology,India,DST/INSPIRE Fellowship:2021/IF210073.
文摘Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development.Osteogenesis is the process by which new bones are formed;it also aids in bone remodeling.Wnt/β-catenin and bone morphogenetic protein(BMP)signaling pathways are involved in many cellular processes and considered to be essential for life.Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body.Recent studies have indicated that these two signaling pathways contribute to osteogenic differen-tiation.Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway.Here,we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation,emphasizing the canonical pathways.This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch-and extracellular-regulated kinases in osteogenic differentiation and bone development.
基金Supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation,No.GZC20231088President Foundation of The Third Affiliated Hospital of Southern Medical University,China,No.YP202210.
文摘BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.
基金granted by the National Key R&D Program of China (2021YFD21001005)National Natural Science Foundation of China (31972102,32101980)+1 种基金Special key project of Chongqing technology innovation and application development (cstc2021jscx-cylhX0014)Chongqing Technology Innovation and Application Development Special Project (cstc2021jscx-tpyzxX0014)。
文摘This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.
文摘BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.
基金Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China,No.2022YFA1105800the National Natural Science Foundation of China,No.81970940.
文摘BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process.
基金supported by the National Natural Science Foundation of China (32072191)Daxing District Major Scientific and Technological Achievements Transformation Project (2020006)+1 种基金Beijing Innovation Team Project of Livestock Industry Technology SystemBeijing Science and Technology Special Project (Z201100002620005)。
文摘The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorating postmenopausal osteoporosis in a rat model established using bilateral ovariectomy.After 3 months of FM(containing vitamin D,and casein phosphopeptides,1000 mg Ca/100 g)or control milk(110 mg Ca/100 g milk)supplementation,bone changes were assessed using dual-energy X-ray absorptiometry,microcomputed tomography,and bone biomechanical testing.The results revealed that FM can regulate bone metabolism and gut microbiota composition,which act on bone metabolism through pathways associated with steroid hormone biosynthesis,relaxin signaling,serotonergic synapse,and unsaturated fatty acid biosynthesis.Furthermore,FM administration significantly increased bone mineral content and density in the lumbar spine and femur,as well as femoral compressive strength,while improving femoral trabecular bone parameters and microarchitecture.Mechanistically,we found that the effects may be due to increased levels of estrogen,bone formation marker osteocalcin,and procollagen typeⅠN-propeptide,and decreased expression of the bone resorption marker C-telopiptide and tartrate-resistant acid phosphatase 5b.Overall,the findings suggest that FM is a potential alternative therapeutic option for ameliorating postmenopausal osteoporosis.
基金financially supported by Shenzhen Agricultural Development Special Fund(Fishery)Agricultural High-Tech Project([2021]735)the Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173207022)Youth Science Foundation Project(32101936)。
文摘Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanism of Andrias davidianus bone peptides(ADBP)on HUA-induced kidney damage.In the present study,we generated the standard ADBP which contained high hydrophobic amino acid and low molecular peptide contents.In vitro results found that ADBP protected uric acid(UA)-induced HK-2 cells from damage by modulating urate transporters and antioxidant defense.In vivo results indicated that ADBP effectively ameliorated renal injury in HUA-induced CKD mice,evidenced by a remarkable decrease in serum UA,creatinine and blood urea nitrogen,improving kidney UA excretion,antioxidant defense and histological kidney deterioration.Metabolomic analysis highlighted 14 metabolites that could be selected as potential biomarkers and attributed to the amelioration effects of ADBP on CKD mice kidney dysfunction.Intriguingly,ADBP restored the gut microbiome homeostasis in CKD mice,especially with respect to the elevated helpful microbial abundance,and the decreased harmful bacterial abundance.This study demonstrated that ADBP displayed great nephroprotective effects,and has great promise as a food or functional food ingredient for the prevention and treatment of HUA-induced CKD.
基金supported by the Fujian Minimally Invasive Medical Center Foundation,No.2128100514(to CC,CW,HX)the Natural Science Foundation of Fujian Province,No.2023J01640(to CC,CW,ZL,HX)。
文摘Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.
基金Supported by the National Natural Science Foundation of China,No.81900743Heilongjiang Province Outstanding Young Medical Talents Training Grant Project,China,No.HYD2020YQ0007.
文摘BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain.
基金support of the National Natural Science Foundation of China(Grant No.52205593)Shaanxi Natural Science Foundation Project(2024JC-YBMS-711).
文摘The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration.Inspired by bioelectricity,electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix,thereby accelerating bone regeneration.With ongoing advances in biomaterials and energy-harvesting techniques,electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue.In this review,we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Next,we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering.Finally,we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
基金supported in part by funding from the National Institutes of Health (DK053904,DE022327,AR077539,CA093900,CA046592 and P30 AR069620)National Health and Medical Research Council (APP1143802)Mater Foundation.
文摘Apoptosis is crucial for tissue homeostasis and organ development.In bone,apoptosis is recognized to be a main fate of osteoblasts,yet the relevance of this process remains underexplored.Using our murine model with inducible Caspase 9,the enzyme that initiates intrinsic apoptosis,we triggered apoptosis in a proportion of mature osteocalcin(OCN^(+))osteoblasts and investigated the impact on postnatal bone development.
文摘BACKGROUND:The widespread use of recreational drugs has raised concerns regarding their eff ects on various organ systems.The use of cannabis and opioids in chronic pain management increases their prevalence among patients with musculoskeletal conditions whose bone health may already be compromised.This article aims to review the pathophysiology and toxic eff ects of recreational drug use on musculoskeletal health to establish appropriate pain regimens for patients with substance use.METHODS:Medical literature published from 1970 until 2022 was identifi ed utilizing MEDLINE/PubMed and the Cochrane Library.In addition to the databases,references were obtained through the use of reference lists of published articles identifi ed by the aforementioned databases.The initial search terms included opioids,inhalants,hallucinogens,cannabis,stimulants,and bone health.There were no methodological limitations in relation to the initial acquisition and analysis of data.RESULTS:A total of 55 research articles were included in this review.Cannabis,stimulants,opioids,and inhalants impact bone maintenance,specifically osteoblast and osteoclast activity,as well as impede hormone production.These substances inhibit bone remodeling and development,manifesting as lower bone mineral density and increased fracture risk in chronic users.CONCLUSION:Although the current literature suggests a deleterious effect of recreational drugs on bone health and musculoskeletal disease,further research is warranted to evaluate the clinical effects of long-term substance use.The evaluation of such effects will aid in establishing appropriate pain regimens,as well as appropriate screening and treatment plans for recreational drug users.
文摘Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have been recognized for their biocompatibility and biodegradability.However,their susceptibility to rapid corrosion and degradation has garnered notable research interest in bone tissue engineering(BTE),particularly in the development of Mg-incorporated biocomposite scaffolds.These scaffolds gradually release Mg2+,which enhances immunomodulation,osteogenesis,and angiogenesis,thus facilitating effective bone regeneration.This review presents myriad fabrication techniques used to create Mg-incorporated biocomposite scaffolds,including electrospinning,three-dimensional printing,and sol-gel synthesis.Despite these advancements,the application of Mg-incorporated biocomposite scaffolds faces challenges such as controlling the degradation rate of Mg and ensuring mechanical stability.These limitations highlight the necessity for ongoing research aimed at refining fabrication techniques to better regulate the physicochemical and osteogenic properties of scaffolds.This review provides insights into the potential of Mg-incorporated biocomposite scaffolds for BTE and the challenges that need to be addressed for their successful translation into clinical applications.
文摘1. Introduction The tegmental wall of the tympanic cavity is a thin plate of the temporal bone that separates the middle cranial fossa(MCF) from the ear. This anatomical region consists of two areas: an anterior one, comprised of the tegmen tympani(To′th et al., 2007), and a posterior one, formed by the tegmen antri and the tegmen mastoideum(Makki et al., 2011). In some patients, the tegmental region of the temporal bone can be interrupted, causing a tegmen defect(TD). A TD is sometimes associated with a meningoencephalic herniation(MEH), in which brain tissue herniates through a TD.
基金funded by Project of Liaoning Xingliao Talents Plan(XLYC2002103)Basic applied research program of Living Province of China(No.202220347-JH2/1013).
文摘Traditional designs and developments of bone biomaterials mostly concentrate on the positive regulation of osteoblast lineage cells,but often ignore the importance of immune responses and the equilibrium between bone resorption mediated by osteoclasts and bone formation mediated by osteoblasts.Immune dysregulation is associated with an imbalance between pro-inflammatory and anti-inflammatory processes,which may influence the efficacy of bone therapy.Therefore,implanted biomaterials should appropriately and precisely modulate subsequent immune responses.Magnesium(Mg)has been used to fabricate various Mg alloys for bone repair because of its favorable attributes such as osteogenic potential,immune regulation characteristics,biodegradability,and biocompatibility.Various basic research and clinical trials have been already conducted in many countries to explore the physical properties of Mg-containing implants and their clinical outcomes in bone fracture and defect repair.Therefore,this review summarizes the immune response to Mg-containing implants,and further organizes the current research and development progress of Mg-containing implants.The review aims to offer an overview of the current knowledge on immunomodulation of Mg-containing implants and future challenges in their clinical application,which could provide further insight in the development of better strategies for the treatment of bone defect and fracture.
基金support for this research from AB Vista,Marlborough,UK,is greatly appreciated。
文摘Background The effect of microbial phytase on amino acid and energy digestibility is not consistent in pigs,which may be related to the phytase dosage or the adaptation length to the diet.Therefore,an experiment was conducted to test the hypotheses that increasing dietary phytase after an 18-day adaptation period:1)increases nutrient and energy digestibility;2)increases plasma P,plasma inositol,and bone ash of young pigs;and 3)demonstrates that maximum phytate degradation requires more phytase than maximum P digestibility.Results Data indicated that increasing inclusion of phytase[0,250,500,1,000,2,000,and 4,000 phytase units(FTU)/kg feed]in corn-soybean meal-based diets increased apparent ileal digestibility(AID)of Trp(quadratic;P<0.05),and of Lys and Thr(linear;P<0.05),and tended to increase AID of Met(linear;P<0.10).Increasing dietary phytase also increased AID and apparent total tract digestibility(ATTD)of Ca and P(quadratic;P<0.05)and increased ATTD of K and Na(linear;P<0.05),but phytase did not influence the ATTD of Mg or gross energy.Concentrations of plasma P and bone ash increased(quadratic;P<0.05),and plasma inositol also increased(linear;P<0.05)with increasing inclusion of phytase.Reduced concentrations of inositol phosphate(IP)6 and IP5(quadratic;P<0.05),reduced IP4 and IP3(linear;P<0.05),but increased inositol concentrations(linear;P<0.05)were observed in ileal digesta as dietary phytase increased.The ATTD of P was maximized if at least 1,200 FTU/kg were used,whereas more than 4,000 FTU/kg were needed to maximize inositol release.Conclusions Increasing dietary levels of phytase after an 18-day adaptation period increased phytate and IP ester degradation and inositol release in the small intestine.Consequently,increasing dietary phytase resulted in improved digestibility of Ca,P,K,Na,and the first 4 limiting amino acids,and in increased concentrations of bone ash and plasma P and inositol.In a corn-soybean meal diet,maximum inositol release requires approximately 3,200 FTU/kg more phytase than that required for maximum P digestibility.