期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effects of angelica sinensis polysaccharide-iron complex on hemolytic anemia and bone marrow injury in mice 被引量:1
1
作者 王珮珮 张玉 +1 位作者 王凯平 李珂 《Journal of Chinese Pharmaceutical Sciences》 CAS 2008年第3期197-202,共6页
To investigate the therapeutic effects of angelica sinensis polysaccharide-iron complex (APIC) on hemolytic anemia and bone marrow injury in mice models. The hemolytic anemia mouse model was established by i.p. of p... To investigate the therapeutic effects of angelica sinensis polysaccharide-iron complex (APIC) on hemolytic anemia and bone marrow injury in mice models. The hemolytic anemia mouse model was established by i.p. of phenylhydrazine (PHZ). Changes of the indices including red blood cell count (RBC), hemoglobin (Hb) and hematocrit (HCT) were determined by blood analyzer, and reticulocytes were observed by brilliant cresol blue staining during administration. Bone marrow injured mouse model was established by i.p. of cytoxan (CY) and chloramphenicol (CH), and the therapeutic effect was observed by H-E staining. The indices of APIC treated groups with the medium and high doses were higher than those of the model group significantly. Moreover, the Hb and HCT were restored to the normal level after drug treatments. In addition, APIC can promote the proliferation and differentiation of reticulocytes obviously in the early stage of anemia mice, decrease adipose cell proliferation in bone marrow of injured mice and hasten the recuperation. In conclusion, APIC has therapeutic efficacy on hemolytic anemia and bone marrow injury caused by chemicals, which is reported for the first time. 展开更多
关键词 Angelica sinensis polysaccharide-iron complex Hemolytic anemia bone marrow injury
下载PDF
The future of bone marrow stromal cell transplantation for the treatment of spinal cord injury 被引量:6
2
作者 Mitsuhiro Enomoto 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期383-384,共2页
Bone marrow stromal cell (BMSC) transplantation therapy is a promising approach for treating spinal cord injury (SCI), based on a number of experimental and clinical reports (Wright et al., 2011). BMSCs are a so... Bone marrow stromal cell (BMSC) transplantation therapy is a promising approach for treating spinal cord injury (SCI), based on a number of experimental and clinical reports (Wright et al., 2011). BMSCs are a source of neuroregenerative somatic stem cells that are without the potential for tumorigenicity. Although clinical studies of autologous BMSC transplantation have been reported in Asia (fiang et al., 2013; Yoon et al., 2007), in Japan, it is currently an uncommon procedure and highly controversial as well. This perspective paper provides an overview of the clinical effectiveness of BMSC trans- 191antation and a proposal to enhance its use as a viable therapy. 展开更多
关键词 BMSCS The future of bone marrow stromal cell transplantation for the treatment of spinal cord injury SCI bone cell
下载PDF
Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation 被引量:5
3
作者 Ya-jing Zhou Jian-min Liu +3 位作者 Shu-ming Wei Yun-hao Zhang Zhen-hua Qu Shu-bo Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1305-1311,共7页
Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair u... Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells stem cell transplantation propofol spinal cord injury repair neuroprotection anesthesia neural regeneration
下载PDF
Therapeutic Potential of Bone Marrow Derived Mesenchymal Stem Cells in Modulating Astroglyosis of Surgical Induced Experimental Spinal Cord Injury 被引量:1
4
作者 Moataz A. Elawady Mohammed M. Elmaghrabi +4 位作者 Nesrine Ebrahim Mona A. Elawady Dina Sabry Ashraf Shamaa Alyaa Ragaei 《Advances in Bioscience and Biotechnology》 2016年第6期251-265,共15页
Background: Spinal cord injury (SCI) unsuccessful regeneration was due to glial scar development. It was a major obstacle to axonal restoration. Safe therapeutic intervention by the use of bone marrow derived stem cel... Background: Spinal cord injury (SCI) unsuccessful regeneration was due to glial scar development. It was a major obstacle to axonal restoration. Safe therapeutic intervention by the use of bone marrow derived stem cells (BMMSCs) transplantation applied in the present study could reduce spinal disability. Material and methods: Forty male albino rats were divided into four groups: GI: negative control (n = 10 rats);GII: positive control after SCI (n = 10 rats);GIII: SCI + BM - MSCs intravenous injected and GIV: SCI + BM - MSCs intra lesion injected (n = 10 rats in each group). The samples were taken from spinal cord tissues around the region of injury and were subjected to histological, immunohistochemical assessment. RNA extraction and real time PCR for detection of nerve regeneration and astrocyte response to the injury were also performed. Results: Clinical improvement occurred by the enhancement in the Basso, Beattie and Bresnahan (BBB) score after SCI. Histological examinations showed positive regenerative responses in GIV compared to GIII. Conclusion: BM-MSCs transplantation has a promising role in enhancing the microenvironment for nerve regeneration through stumbling the glial scaring formation and inflammatory response after chronic spinal cord injury especially by using intra-lesion route injection. 展开更多
关键词 Spinal Cord injurybone marrow Mesenchymal Stem Cells Rats and Glial Tissue
下载PDF
Effect of Ligustrazine on Expressions of Basic Fibroblast Growth Factor and Its Receptor in Bone Marrow of Mice with Acute Radiation Injury
5
作者 吴宁 孙汉英 +5 位作者 刘文励 孟凡凯 刘振芳 徐慧珍 路武 谢瑶 《Chinese Journal of Integrated Traditional and Western Medicine》 2004年第3期225-225,共1页
Objective: To study the expressions of basic fibroblast growth factor (bFGF) and its receptor (bFGFR) in bone marrow of mice with acute radiation injury, and to evaluate the effect of Ligustrazine (Lt) on them. Method... Objective: To study the expressions of basic fibroblast growth factor (bFGF) and its receptor (bFGFR) in bone marrow of mice with acute radiation injury, and to evaluate the effect of Ligustrazine (Lt) on them. Methods: Fifty-six Kunming mice of clean grade were randomly divided into 3 groups, the normal group, the control group and the Lt group. Mice in the latter two groups were once homogeneously systemic irradiated with 6.0 Gy of 60 Co, with the absorption dose rate of 0. 56 Gy/min, then treated with saline (0.2 ml/ mice) or Lt (2 mg/mice) respectively, twice a day through gastrogavage for successive 13 days. Mice were sacrificed in batch on the 3rd, 7th and 14th day by cervical dislocation to collect the bilateral femoral bone marrow for preparing bone marrow mono-nuclear cell (BMMNC) suspension. The bFGFR expression on surface of BMMNC was determined by flow cytometry; and the bFGF expres-sion level in one side of femoral bone marrow tissue was detected by immunohistochemistry with SABC-AP assay. Results: The bFGF expression in bone marrow of mice on the 3rd, 7th and 14th day after acute radiation injury all were significantly lower than that of the normal mice (P<0.05 or P<0.01). The expressions of bFGF and bFGFR in the Lt group detected were significantly higher than that in the control group detected at the corresponding time points (P<0.05 or P < 0.01). Conclusion:By way of enhancing bFGF expression in bone marrow and bFGFR expression on surface of BMMNC to accelerate the repairing of hemopoietic micro-environment in bone marrow might be one of the mechanisms of Lt in promoting hemopoietic function reconstitution after acute radiation injury.Original article on CJITWM (Chin) 2004;24(5):439 展开更多
关键词 Effect of Ligustrazine on Expressions of Basic Fibroblast Growth Factor and Its Receptor in bone marrow of Mice with Acute Radiation injury
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部