Extracellular matrix( ECM) plays a prominent role in establishing and maintaining an appropriate microenvironment for tissue regeneration. The aims of this study were to construct a tissue engineered scaffold by recon...Extracellular matrix( ECM) plays a prominent role in establishing and maintaining an appropriate microenvironment for tissue regeneration. The aims of this study were to construct a tissue engineered scaffold by reconstituting osteoblast cell-derived ECM( O-ECM) on the electrospun nanofibrous scaffold,and further to evaluate its subsequent application for promoting the proliferation of bone marrow mesenchymal stem cells( BMSCs). To engineer a biomimetic scaffold, calvarial osteoblasts and electrospun poly-llactic acid( PLLA) nanofibers were prepared and subjected to decellularize for O-ECM deposition. To evaluate and characterize the O-ECM/PLLA scaffold, the morphology was examined and several specific mark proteins of osteoblasts matrix were evaluated.Furthermore,the cell counting kit-8( CCK-8) assay was used to detect the proliferation of the BMSCs cultivated on the O-ECM/PLLA scaffold. The results indicated O-ECM/PLLA scaffold was loaded with Collagen I, Fibronectin, and Laminin, as the composition of the marrow ECM. After decellularization,O-ECM deposition was observed in O-ECM/PLLA scaffold. Moreover,the O-ECM/PLLA scaffold could significantly enhance the proliferation of BMSCs,suggesting better cytocompatibility compared to the other groups tested. Taken together,a biomimetic scaffold based on the joint use of O-ECM and PLLA biomaterials,which represents a promising approach to bone tissue engineering, facilitates the expansion of BMSCs in vitro.展开更多
Objective To create a method for constructing a tissue-engineered graft with self-derived bone marrow cells and heterogeneous acellular matrix.Methods The mononuclear cells were isolated from bone marrows drawn from p...Objective To create a method for constructing a tissue-engineered graft with self-derived bone marrow cells and heterogeneous acellular matrix.Methods The mononuclear cells were isolated from bone marrows drawn from piglets and cultured in different mediums including either vascular endothelial growth factor(VEGF)or platelet derived growth factor BB(PDGF-BB)to observe their expansion and differentiation.The aortas harvested from canines were processed by a multi-step decellularizing technique to erase.The bone marrow mononuclear cells cultured in the mediums without any growth factors were seeded to the acellular matrix.The cells-seeded grafts were incubated in vitro for 6 d and then implanted to the cells-donated piglets to substitute parts of their native pulmonary arteries.Results After 4 d culturing,the cells incubated in the medium including VEGF showed morphological feature of endothelial cells(ECs)and were positive to ECs-specific monoclonal antibodies of CD31,FLK-1,VE-Cadherin and vWF.The cells incubated in the medium including PDGF-BB showed morphological feature of smooth muscle cells(SMCs)and were positive to SMCs-specific monoclonal antibodies of α-SMA and Calponin.One hundred days after implantation of seeded grafts,the inner surfaces of explants were smooth without thrombosis,calcification and aneurysm.Under the microscopy,plenty of growing cells could be seen and elastic and collagen fibers were abundant.Conclusion Mesenchymal stem cells might exist in mononuclear cells isolated from bone marrow.They would differentiate into endothelial cells or smooth muscle cells in proper in vitro or in vivo environments.The bone marrow mononuclear cells might be a choice of seeding cells in constructing tissue-engineered graft.展开更多
The biocompatibility and osteogenic activity of allogenic decalcified bone matrix (DBM) used as a carrier for bone tissue engineering were studied. Following the method described by Urist, allogenic DBM was made. In v...The biocompatibility and osteogenic activity of allogenic decalcified bone matrix (DBM) used as a carrier for bone tissue engineering were studied. Following the method described by Urist, allogenic DBM was made. In vitro, DBM and bone marrow stromal cell (BMSC) from rabbits were co-cultured for 3-7 days and subjected to HE staining, and a series of histomorphological observations were performed under phase-contrast microscopy and scanning electron microscopy (SEM). In vivo the mixture of DBM/BMSC co-cultured for 3 days was planted into one side of muscules sacrospinalis of rabbits, and the DBM without BMSC was planted into other side as control. Specimens were collected at postoperative week 1, 2 and 4, and subjected to HE staining, and observed under SEM. The results showed during culture in vitro, the BMSCs adherent to the wall of DBM grew, proliferated and had secretive activity. The in vivo experiment revealed that BMSCs and undifferentiated mesenchymal cells in the perivascular region invaded gradually and proliferated together in DBM/BMSC group, and colony-forming units of chondrocytes were found. Osteoblasts, trabecular bone and medullary cavity appeared. The inflammatory reaction around muscles almost disappeared at the second weeks. In pure DBM group, the similar changes appeared from the surface of the DBM to center, and the volume of total regenerate bones was less than the DBM/BMSC group at the same time. The results indicated that the mixture of DBM and BMSC had good biocompatibility and ectopic induced osteogenic activity.展开更多
The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural di...The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined speciifc neu-ronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuro-nal-speciifc proteins, includingβIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differen-tiation medium differentiated into a multilayered neural network-like structure with long nerve ifbers that was composed of several parallel microifbers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sec-tioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve.展开更多
Objective: To compare the composition of nuclear matrix proteins (NMP) between leukemia cells and normal bone marrow cells. Methods: NMP was isolated by high-salt extraction and identified in acute and chronic myeloge...Objective: To compare the composition of nuclear matrix proteins (NMP) between leukemia cells and normal bone marrow cells. Methods: NMP was isolated by high-salt extraction and identified in acute and chronic myelogenous leukemia cells as well as in the blast phase of chronic leukemia. On SDS-PAGE, NMPs with molecular myelogenous ferment from what were seen in normal bone marrow cells were present in both acute and chronic myelogenous leukemia. Conclusion: Marked changes of NMP, not only in contents but also in compositions, exist in leukemic cells compared with normal bone marrow cells. NMP may serve as a target of chemotherapeutic drug against leukemia.展开更多
Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydro...Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhe-sion stage. Moreover, seeded cells were distributed throughout the material.展开更多
Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derive...Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained pink,smooth and translucent cartilage-like tissue after 3 weeks of culture.We observed evenly distributed cartilage ECM proteoglycans and collagen type Ⅱ around seeded BMSCs on the surface and inside the pores throughout the scaffold.Conclusion This study stuggests that a cartilage ECM scaffold holds much promise for in vitro cartilage tissue engineering.展开更多
目的研究经多聚左旋赖氨酸修饰的山羊脱钙骨基质(demineralized bone matrix decorated with poly-L-lysine,PLL-DBM)的性能,为选择性细胞滞留技术(selective cell retention,SCR)提供一种对骨髓干细胞黏附性能良好的富集基质材料。方...目的研究经多聚左旋赖氨酸修饰的山羊脱钙骨基质(demineralized bone matrix decorated with poly-L-lysine,PLL-DBM)的性能,为选择性细胞滞留技术(selective cell retention,SCR)提供一种对骨髓干细胞黏附性能良好的富集基质材料。方法将取材于山羊股骨近端的松质骨去皮质理化处理制成脱钙骨基质(demineralized bonem atrix,DBM),用多聚左旋赖氨酸(poly-L-lysine,PLL)对其进行修饰。扫描电镜分析其显微结构;氨基酸成分分析检测PLL与DBM的复合情况;通过纤维母细胞集落形成单位(CFU-F)计数,检测山羊PLL-DBM对骨髓干细胞的富集效果;在山羊横突间融合模型中,通过X线片及组织学评价其成骨能力。结果PLL-DBM具有天然网状孔隙结构系统,空隙内修饰有PLL形成的蜘蛛网样结构;PLL与DBM能较好地复合;山羊PLL-DBM对骨髓干细胞富集效果明显优于空白DBM(P<0.01)。PLL-DBM的成骨能力与自体髂骨相当。结论山羊PLL-DBM对骨髓干细胞有较好的富集效果,成骨能力强,是一种理想的富集基质材料。展开更多
基金Shanghai Municipal Natural Science Foundation,China(No.15ZR1400500)the Fundamental Research Funds for the Central Universities,China(Nos.16D110520,EG2017011)
文摘Extracellular matrix( ECM) plays a prominent role in establishing and maintaining an appropriate microenvironment for tissue regeneration. The aims of this study were to construct a tissue engineered scaffold by reconstituting osteoblast cell-derived ECM( O-ECM) on the electrospun nanofibrous scaffold,and further to evaluate its subsequent application for promoting the proliferation of bone marrow mesenchymal stem cells( BMSCs). To engineer a biomimetic scaffold, calvarial osteoblasts and electrospun poly-llactic acid( PLLA) nanofibers were prepared and subjected to decellularize for O-ECM deposition. To evaluate and characterize the O-ECM/PLLA scaffold, the morphology was examined and several specific mark proteins of osteoblasts matrix were evaluated.Furthermore,the cell counting kit-8( CCK-8) assay was used to detect the proliferation of the BMSCs cultivated on the O-ECM/PLLA scaffold. The results indicated O-ECM/PLLA scaffold was loaded with Collagen I, Fibronectin, and Laminin, as the composition of the marrow ECM. After decellularization,O-ECM deposition was observed in O-ECM/PLLA scaffold. Moreover,the O-ECM/PLLA scaffold could significantly enhance the proliferation of BMSCs,suggesting better cytocompatibility compared to the other groups tested. Taken together,a biomimetic scaffold based on the joint use of O-ECM and PLLA biomaterials,which represents a promising approach to bone tissue engineering, facilitates the expansion of BMSCs in vitro.
基金Supported by Shanghai Nature Science Foundation,China(99ZB14018)
文摘Objective To create a method for constructing a tissue-engineered graft with self-derived bone marrow cells and heterogeneous acellular matrix.Methods The mononuclear cells were isolated from bone marrows drawn from piglets and cultured in different mediums including either vascular endothelial growth factor(VEGF)or platelet derived growth factor BB(PDGF-BB)to observe their expansion and differentiation.The aortas harvested from canines were processed by a multi-step decellularizing technique to erase.The bone marrow mononuclear cells cultured in the mediums without any growth factors were seeded to the acellular matrix.The cells-seeded grafts were incubated in vitro for 6 d and then implanted to the cells-donated piglets to substitute parts of their native pulmonary arteries.Results After 4 d culturing,the cells incubated in the medium including VEGF showed morphological feature of endothelial cells(ECs)and were positive to ECs-specific monoclonal antibodies of CD31,FLK-1,VE-Cadherin and vWF.The cells incubated in the medium including PDGF-BB showed morphological feature of smooth muscle cells(SMCs)and were positive to SMCs-specific monoclonal antibodies of α-SMA and Calponin.One hundred days after implantation of seeded grafts,the inner surfaces of explants were smooth without thrombosis,calcification and aneurysm.Under the microscopy,plenty of growing cells could be seen and elastic and collagen fibers were abundant.Conclusion Mesenchymal stem cells might exist in mononuclear cells isolated from bone marrow.They would differentiate into endothelial cells or smooth muscle cells in proper in vitro or in vivo environments.The bone marrow mononuclear cells might be a choice of seeding cells in constructing tissue-engineered graft.
文摘The biocompatibility and osteogenic activity of allogenic decalcified bone matrix (DBM) used as a carrier for bone tissue engineering were studied. Following the method described by Urist, allogenic DBM was made. In vitro, DBM and bone marrow stromal cell (BMSC) from rabbits were co-cultured for 3-7 days and subjected to HE staining, and a series of histomorphological observations were performed under phase-contrast microscopy and scanning electron microscopy (SEM). In vivo the mixture of DBM/BMSC co-cultured for 3 days was planted into one side of muscules sacrospinalis of rabbits, and the DBM without BMSC was planted into other side as control. Specimens were collected at postoperative week 1, 2 and 4, and subjected to HE staining, and observed under SEM. The results showed during culture in vitro, the BMSCs adherent to the wall of DBM grew, proliferated and had secretive activity. The in vivo experiment revealed that BMSCs and undifferentiated mesenchymal cells in the perivascular region invaded gradually and proliferated together in DBM/BMSC group, and colony-forming units of chondrocytes were found. Osteoblasts, trabecular bone and medullary cavity appeared. The inflammatory reaction around muscles almost disappeared at the second weeks. In pure DBM group, the similar changes appeared from the surface of the DBM to center, and the volume of total regenerate bones was less than the DBM/BMSC group at the same time. The results indicated that the mixture of DBM and BMSC had good biocompatibility and ectopic induced osteogenic activity.
基金supported by a grant from Construction Project of Gansu Provincial Animal Cell Engineering Center,No.0808NTGA013Program for Innovative Research Team in University of Ministry of Education of China,No.IRT13091
文摘The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined speciifc neu-ronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuro-nal-speciifc proteins, includingβIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differen-tiation medium differentiated into a multilayered neural network-like structure with long nerve ifbers that was composed of several parallel microifbers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sec-tioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve.
文摘Objective: To compare the composition of nuclear matrix proteins (NMP) between leukemia cells and normal bone marrow cells. Methods: NMP was isolated by high-salt extraction and identified in acute and chronic myelogenous leukemia cells as well as in the blast phase of chronic leukemia. On SDS-PAGE, NMPs with molecular myelogenous ferment from what were seen in normal bone marrow cells were present in both acute and chronic myelogenous leukemia. Conclusion: Marked changes of NMP, not only in contents but also in compositions, exist in leukemic cells compared with normal bone marrow cells. NMP may serve as a target of chemotherapeutic drug against leukemia.
基金supported by the National Natural Science Foundation of China,No.31071222Jilin Province Science and Technology Development Project in China,No.20080738the Frontier Interdiscipline Program of Norman Bethune Health Science Center of Jilin University in China,No.2013106023
文摘Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhe-sion stage. Moreover, seeded cells were distributed throughout the material.
基金This study was funded by the National Natural Science Foundation of China (Nos. 31000432, 30930092 and 81272046) and National Technology Research and Development Program of China (No. 2012AA020502, 2012CB518106).Acknowledgments: We thank HUANG Jing-xiang, T1AN Yue, and SUI Xiang for kind assistance in cell culture and histology.
文摘Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained pink,smooth and translucent cartilage-like tissue after 3 weeks of culture.We observed evenly distributed cartilage ECM proteoglycans and collagen type Ⅱ around seeded BMSCs on the surface and inside the pores throughout the scaffold.Conclusion This study stuggests that a cartilage ECM scaffold holds much promise for in vitro cartilage tissue engineering.
文摘目的研究经多聚左旋赖氨酸修饰的山羊脱钙骨基质(demineralized bone matrix decorated with poly-L-lysine,PLL-DBM)的性能,为选择性细胞滞留技术(selective cell retention,SCR)提供一种对骨髓干细胞黏附性能良好的富集基质材料。方法将取材于山羊股骨近端的松质骨去皮质理化处理制成脱钙骨基质(demineralized bonem atrix,DBM),用多聚左旋赖氨酸(poly-L-lysine,PLL)对其进行修饰。扫描电镜分析其显微结构;氨基酸成分分析检测PLL与DBM的复合情况;通过纤维母细胞集落形成单位(CFU-F)计数,检测山羊PLL-DBM对骨髓干细胞的富集效果;在山羊横突间融合模型中,通过X线片及组织学评价其成骨能力。结果PLL-DBM具有天然网状孔隙结构系统,空隙内修饰有PLL形成的蜘蛛网样结构;PLL与DBM能较好地复合;山羊PLL-DBM对骨髓干细胞富集效果明显优于空白DBM(P<0.01)。PLL-DBM的成骨能力与自体髂骨相当。结论山羊PLL-DBM对骨髓干细胞有较好的富集效果,成骨能力强,是一种理想的富集基质材料。