期刊文献+
共找到7,353篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of transplantation of bone marrow stem cells on myocardial infarction size in a rabbit model 被引量:3
1
作者 Li-li Ji Xiao-feng Long +1 位作者 Hui Tian Yu-fei Liu 《World Journal of Emergency Medicine》 CAS 2013年第4期304-310,共7页
BACKGROUND:Intravenous transplantation has been regarded as a most safe method in stem cell therapies.There is evidence showing the homing of bone marrow stem cells(BMSCs) into the injured sites,and thus these cells c... BACKGROUND:Intravenous transplantation has been regarded as a most safe method in stem cell therapies.There is evidence showing the homing of bone marrow stem cells(BMSCs) into the injured sites,and thus these cells can be used in the treatment of acute myocardial infarction(Ml).This study aimed to investigate the effect of intravenous and epicardial transplantion of BMSCs on myocardial infarction size in a rabbit model.METHODS:A total of 60 New Zealand rabbits were randomly divided into three groups:control group,epicardium group(group Ⅰ) and ear vein group(group Ⅱ).The BMSCs were collected from the tibial plateau in group Ⅰ and group Ⅱ,cultured and labeled.In the three groups,rabbits underwent thoracotomy and ligation of the middle left anterior descending artery.The elevation of ST segment>0.2 mV lasting for 30 minutes on the lead Ⅱ and Ⅲ of electrocardiogram suggested successful introduction of myocardial infarction.Two weeks after myocardial infarction,rabbits in group Ⅰ were treated with autogenous BMSCs at the infarct region and those in group Ⅱ received intravenous transplantation of BMSCs.In the control group,rabbits were treated with PBS following thoracotomy.Four weeks after myocardial infarction,the heart was collected from all rabbits and the infarct size was calculated.The heart was cut into sections followed by HE staining and calculation of infarct size with an image system.RESULTS:In groups Ⅰ and Ⅱ,the infarct size was significantly reduced after transplantation with BMSCs when compared with the control group(P<0.05).However,there was no significant difference in the infarct size between groups Ⅰ and Ⅱ(P>0.05).CONCLUSION:Transplantation of BMSCs has therapeutic effect on Ml.Moreover,epicardial and intravenous transplantation of BMSCs has comparable therapeutic efficacy on myocardial infarction. 展开更多
关键词 bone marrow stem cells Acute myocardial infarction Epicardial transplantation Intravenous transplantation Infarct size RABBIT
下载PDF
Activation of bone marrow stem cells colonies by aintake of isoflavone aglycone-rich fermented soybean extract (IFA-FSE) in mice
2
《中国输血杂志》 CAS CSCD 2001年第S1期413-,共1页
关键词 bone IFA-FSE in mice Activation of bone marrow stem cells colonies by aintake of isoflavone aglycone-rich fermented soybean extract stem
下载PDF
Effects of Guiyuanfang and autologous transplantation of bone marrow stem cells on rats with liver fibrosis 被引量:7
3
作者 Li-MaoWu Lian-DaLi +2 位作者 HongLiu Ke-YongNing Yi-KuiLi 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第8期1155-1160,共6页
AIM: To investigate the therapeutic effects of Guiyuanfang and bone marrow stem cells (BMSCs) on rats with liver fibrosis.METHODS: Liver fibrosis model was induced by carbon tetrachloride, ethanol, high lipid and asse... AIM: To investigate the therapeutic effects of Guiyuanfang and bone marrow stem cells (BMSCs) on rats with liver fibrosis.METHODS: Liver fibrosis model was induced by carbon tetrachloride, ethanol, high lipid and assessed biochemically and histologically. Liver function and hydroxyproline contents of liver tissue were determined.Serum hyaluronic acid (HA) level and procollagen Ⅲ level were performed by radioimmunoassay. The VG staining was used to evaluate the collagen deposit in the liver.Immunohistochemical SABC methods were used to detect transplanted BMSCs and expression of urokinase plasminogen activator (uPA).RESULTS: Serum transaminase level and liver fibrosis in rats were markedly reduced by Guiyuanfang and BMSCs. HA level and procollagen Ⅲ level were also reduced obviously,compared to model rats (HA: 47.18±10.97 ng/mL,48.96±14.79 ng/mL; PCⅢ: 22.48±5.46 ng/mL, 26.90±3.35ng/mL; P<0.05).Hydroxyproline contents of liver tissue in both BMSCs group and Guiyuanfang group were far lower than that of model group (1 227.2±43.1 μg/g liver tissue, 1390.8±156.3 μg/g liver tissue; P<0.01). After treatment fibrosis scores were also reduced. Both Guiyuanfang and BMSCs could increase the expression of uPA. The transplanted BMSCs could engraft, survive, and proliferate in the liver.CONCLUSION: Guiyuanfang protects against liver fibrosis.Transplanted BMSCs may engraft, survive, and proliferate in the fibrosis livers indefinitely. Guiyuanfang may synergize with BMSCs to improve recovery from liver fibrosis. 展开更多
关键词 细胞自体移植 骨髓干细胞 肝纤维化 小鼠 医学实验
下载PDF
Differentiation of rat bone marrow stem cells in liver after partial hepatectomy 被引量:5
4
作者 Yu-Tao Zhan Yu Wang +4 位作者 Lai Wei Bin Liu Hong-Song Chen Xu Cong Ran Fei 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第31期5051-5054,共4页
瞄准:在部分肝切除术以后在肝调查老鼠骨髓干细胞的区别。方法:骨髓房间与部分肝切除术从老鼠的胫骨被收集,中间、左的肝的脑叶被切除。骨髓干细胞(你的(+) CD3 (-) CD45RA (-) 房间) 被弄空从骨髓房间充实排序的红房间和激活荧光的... 瞄准:在部分肝切除术以后在肝调查老鼠骨髓干细胞的区别。方法:骨髓房间与部分肝切除术从老鼠的胫骨被收集,中间、左的肝的脑叶被切除。骨髓干细胞(你的(+) CD3 (-) CD45RA (-) 房间) 被弄空从骨髓房间充实排序的红房间和激活荧光的房间。排序的骨髓干细胞被门静脉注射被 PKH26-GL 在试管内和 autotransplanted 标记。在 2 wk 以后,在肝的移植骨髓干细胞被白朊(hepatocyte 特定的标记) 的免疫组织化学检验。结果:没有红房间,骨髓干细胞(你的(+) CD3 (-) CD45RA (-) 房间) 说明了 2.8% 骨髓房间。排序的骨髓干细胞上的 10 microM PKH26-GL 的标记的率是大约 95% 。在在肝织物节的 hepatocytes 之中有分散的 PKH26-GL-labeled 房间,并且一些房间表示了白朊。结论:老鼠骨髓干细胞能在再生环境区分进 hepatocytes 并且可以在部分肝切除术以后参予肝新生。 展开更多
关键词 骨髓干细胞 肝再生 肝切除术 细胞分化
下载PDF
Radix Ilicis Pubescentis total flavonoids combined with mobilization of bone marrow stem cells to protect against cerebral ischemia/reperfusion injury 被引量:3
5
作者 Ming-san Miao Lin Guo +1 位作者 Rui-qi Li Xiao Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第2期278-284,共7页
Previous studies have shown that Radix Ilicis Pubescentis total flavonoids have a neuroprotective effect, but it remains unclear whether Radix Ilicis Pubescentis total flavonoids have a synergistic effect with the rec... Previous studies have shown that Radix Ilicis Pubescentis total flavonoids have a neuroprotective effect, but it remains unclear whether Radix Ilicis Pubescentis total flavonoids have a synergistic effect with the recombinant human granulocyte colony stimulating factor-mobilized bone marrow stem cell transplantation on cerebral ischemia/reperfusion injury. Rat ischemia models were administered 0.3, 0.15 and 0.075 g/kg Radix Ilicis Pubescentis total flavonoids from 3 days before modeling to 2 days after injury. Results showed that Radix Ilicis Pubescentis total flavonoids could reduce pathological injury in rats with cerebral ischemia/reperfusion injury. The number of Nissl bodies increased, Bax protein expression decreased, Bcl-2 protein expression increased and the number of CD34-positive cells increased. Therefore, Radix Ilicis Pubescentis total flavonoids can improve the bone marrow stem cell mobilization effect, enhance the anti-apoptotic ability of nerve cells, and have a neuroprotective effect on cerebral ischemia/reperfusion injury in rats. 展开更多
关键词 缺血/再灌注损伤 神经保护作用 骨髓干细胞 总黄酮 脑缺血 冬青 重组人粒细胞集落刺激因子 缺血再灌注损伤
下载PDF
Effect of autologous bone marrow stem cells-scaffold transplantation on the ongoing pregnancy rate in intrauterine adhesion women:a randomized,controlled trial
6
作者 Hui Zhu Taishun Li +11 位作者 Peizhen Xu Lijun Ding Xianghong Zhu Bin Wang Xiaoqiu Tang Juan Li Pengfeng Zhu Huiyan Wang Chenyan Dai Haixiang Sun Jianwu Dai Yali Hu 《Science China(Life Sciences)》 SCIE CAS CSCD 2024年第1期113-121,共9页
Intrauterine adhesion is a major cause of female reproductive disorders.Although we and others uncontrolled pilot studies showed that treatment with autologous bone marrow stem cells made a few patients with severe in... Intrauterine adhesion is a major cause of female reproductive disorders.Although we and others uncontrolled pilot studies showed that treatment with autologous bone marrow stem cells made a few patients with severe intrauterine adhesion obtain live birth,no large sample randomized controlled studies on this therapeutic strategy in such patients have been reported so far.To verify if the therapy of autologous bone marrow stem cells-scaffold is superior to traditional treatment in moderate to severe intrauterine adhesion patients in increasing their ongoing pregnancy rate,we conducted this randomized controlled clinical trial.Totally 195 participants with moderate to severe intrauterine adhesion were screened and 152 of them were randomly assigned in a 1:1 ratio to either group with autologous bone marrow stem cells-scaffold plus Foley balloon catheter or group with only Foley balloon catheter(control group)from February 2016 to January 2020.The per-protocol analysis included 140 participants:72 in bone marrow stem cells-scaffold group and 68 in control group.The ongoing pregnancy occurred in 45/72(62.5%)participants in the bone marrow stem cells-scaffold group which was significantly higher than that in the control group(28/68,41.2%)(RR=1.52,95%CI 1.08–2.12,P=0.012).The situation was similar in live birth rate(bone marrow stem cells-scaffold group 56.9%(41/72)vs.control group 38.2%(26/68),RR=1.49,95%CI 1.04–2.14,P=0.027).Compared with control group,participants in bone marrow stem cells-scaffold group showed more menstrual blood volume in the 3rd and 6th cycles and maximal endometrial thickness in the 6th cycle after hysteroscopic adhesiolysis.The incidence of mild placenta accrete was increased in bone marrow stem cells-scaffold group and no severe adverse effects were observed.In conclusion,transplantation of bone marrow stem cells-scaffold into uterine cavities of the participants with moderate to severe intrauterine adhesion increased their ongoing pregnancy and live birth rates,and this therapy was relatively safe. 展开更多
关键词 intrauterine adhesion Asherman’s syndrome uterine infertility autologous bone marrow stem cells transplantation endometrial regeneration ongoing pregnancy rate
原文传递
Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization
7
作者 Zeyan Liang Zhelun Yang +5 位作者 Haishu Xie Jian Rao Xiongjie Xu Yike Lin Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2259-2269,共11页
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)... Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells hypoxia preconditioning interleukin-1 receptor-associated kinase 1 MACROPHAGES mesenchymal stem cells small extracellular vesicles spinal cord injury
下载PDF
Impaired autophagy activity-induced abnormal differentiation of bone marrow stem cells is related to adolescent idiopathic scoliosis osteopenia
8
作者 Hongqi Zhang Guanteng Yang +3 位作者 Jiong Li Lige Xiao Chaofeng Guo Yuxiang Wang 《Chinese Medical Journal》 SCIE CAS CSCD 2023年第17期2077-2085,共9页
Background:Osteopenia has been well documented in adolescent idiopathic scoliosis(AIS).Bone marrow stem cells(BMSCs)are a crucial regulator of bone homeostasis.Our previous study revealed a decreased osteogenic abilit... Background:Osteopenia has been well documented in adolescent idiopathic scoliosis(AIS).Bone marrow stem cells(BMSCs)are a crucial regulator of bone homeostasis.Our previous study revealed a decreased osteogenic ability of BMSCs in AIS-related osteopenia,but the underlying mechanism of this phenomenon remains unclear.Methods:A total of 22 AIS patients and 18 age-matched controls were recruited for this study.Anthropometry and bone mass were measured in all participants.Bone marrow blood was collected for BMSC isolation and culture.Osteogenic and adipogenic induction were performed to observe the differences in the differentiation of BMSCs between the AIS-related osteopenia group and the control group.Furthermore,a total RNA was extracted from isolated BMSCs to perform RNA sequencing and subsequent analysis.Results:A lower osteogenic capacity and increased adipogenic capacity of BMSCs in AIS-related osteopenia were revealed.Differences in mRNA expression levels between the AIS-related osteopenia group and the control group were identified,including differences in the expression of LRRC17,DCLK1,PCDH7,TSPAN5,NHSL2,and CPT1B.Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed several biological processes involved in the regulation of autophagy and mitophagy.The Western blotting results of autophagy markers in BMSCs suggested impaired autophagic activity in BMSCs in the AIS-related osteopenia group.Conclusion:Our study revealed that BMSCs from AIS-related osteopenia patients have lower autophagic activity,which may be related to the lower osteogenic capacity and higher adipogenic capacity of BMSCs and consequently lead to the lower bone mass in AIS patients. 展开更多
关键词 Adolescent idiopathic scoliosis bone marrow stem cell AUTOPHAGY OSTEOPENIA
原文传递
Low-intensity pulsed ultrasound reduces alveolar bone resorption during orthodontic treatment via Lamin A/C-Yes-associated protein axis in stem cells
9
作者 Tong Wu Fu Zheng +7 位作者 Hong-Yi Tang Hua-Zhi Li Xin-Yu Cui Shuai Ding Duo Liu Cui-Ying Li Jiu-Hui Jiang Rui-Li Yang 《World Journal of Stem Cells》 SCIE 2024年第3期267-286,共20页
BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or to... BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process. 展开更多
关键词 Low-intensity pulsed ultrasound bone resorption OSTEOGENESIS Cytoskeleton-Lamin A/C-Yes-associated protein axis bone marrow mesenchymal stem cells Orthodontic tooth movement
下载PDF
Exosomes from bone marrow mesenchymal stem cells are a potential treatment for ischemic stroke 被引量:5
10
作者 Chang Liu Tian-Hui Yang +3 位作者 Hong-Dan Li Gong-Zhe Li Jia Liang Peng Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2246-2251,共6页
Exosomes derived from human bone marrow mesenchymal stem cells(MSC-Exo)are characterized by easy expansion and storage,low risk of tumor formation,low immunogenicity,and anti-inflammatory effects.The therapeutic effec... Exosomes derived from human bone marrow mesenchymal stem cells(MSC-Exo)are characterized by easy expansion and storage,low risk of tumor formation,low immunogenicity,and anti-inflammatory effects.The therapeutic effects of MSC-Exo on ischemic stroke have been widely explored.However,the underlying mechanism remains unclear.In this study,we established a mouse model of ischemic brain injury induced by occlusion of the middle cerebral artery using the thread bolt method and injected MSC-Exo into the tail vein.We found that administration of MSC-Exo reduced the volume of cerebral infarction in the ischemic brain injury mouse model,increased the levels of interleukin-33(IL-33)and suppression of tumorigenicity 2 receptor(ST2)in the penumbra of cerebral infarction,and improved neurological function.In vitro results showed that astrocyte-conditioned medium of cells deprived of both oxygen and glucose,to simulate ischemia conditions,combined with MSC-Exo increased the survival rate of primary cortical neurons.However,after transfection by IL-33 siRNA or ST2 siRNA,the survival rate of primary cortical neurons was markedly decreased.These results indicated that MSC-Exo inhibited neuronal death induced by oxygen and glucose deprivation through the IL-33/ST2 signaling pathway in astrocytes.These findings suggest that MSC-Exo may reduce ischemia-induced brain injury through regulating the IL-33/ST2 signaling pathway.Therefore,MSC-Exo may be a potential therapeutic method for ischemic stroke. 展开更多
关键词 ASTROCYTES bone marrow mesenchymal stem cells brain injury EXOSOME IL-33 inflammation ischemic stroke neurological function NEURON ST2
下载PDF
Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage 被引量:4
11
作者 Liu-Ting Hu Bing-Yang Wang +2 位作者 Yu-Hua Fan Zhi-Yi He Wen-Xu Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期560-567,共8页
Our previous studies showed that miR-23b was downregulated in patients with intracerebral hemorrhage(ICH). This indicates that miR-23b may be closely related to the patho-physiological mechanism of ICH, but this hypot... Our previous studies showed that miR-23b was downregulated in patients with intracerebral hemorrhage(ICH). This indicates that miR-23b may be closely related to the patho-physiological mechanism of ICH, but this hypothesis lacks direct evidence. In this study, we established rat models of ICH by injecting collagenase Ⅶ into the right basal ganglia and treating them with an injection of bone marrow mesenchymal stem cell(BMSC)-derived exosomal miR-23b via the tail vein. We found that edema in the rat brain was markedly reduced and rat behaviors were improved after BMSC exosomal miR-23b injection compared with those in the ICH groups. Additionally, exosomal miR-23b was transported to the microglia/macrophages, thereby reducing oxidative stress and pyroptosis after ICH. We also used hemin to mimic ICH conditions in vitro. We found that phosphatase and tensin homolog deleted on chromosome 10(PTEN) was the downstream target gene of miR-23b, and exosomal miR-23b exhibited antioxidant effects by regulating the PTEN/Nrf2 pathway. Moreover, miR-23b reduced PTEN binding to NOD-like receptor family pyrin domain containing 3(NLRP3) and NLRP3 inflammasome activation, thereby decreasing the NLRP3-dependent pyroptosis level. These findings suggest that BMSC-derived exosomal miR-23b exhibits antioxidant effects through inhibiting PTEN and alleviating NLRP3 inflammasome-mediated pyroptosis, thereby promoting neurologic function recovery in rats with ICH. 展开更多
关键词 bone marrow mesenchymal stem cells exosomal miRNAs intracerebral hemorrhage miR-23b NEUROINFLAMMATION NLRP3 inflammasome Nrf2 oxidative stress PTEN PYROPTOSIS
下载PDF
Bone marrow mesenchymal stem cells and exercise restore motor function following spinal cord injury by activating PI3K/AKT/mTOR pathway 被引量:3
12
作者 Xin Sun Li-Yi Huang +8 位作者 Hong-Xia Pan Li-Juan Li Lu Wang Gai-Qin Pei Yang Wang Qing Zhang Hong-Xin Cheng Cheng-Qi He Quan Wei 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1067-1075,共9页
Although many therapeutic interventions have shown promise in treating spinal cord injury, focusing on a single aspect of repair cannot achieve successful and functional regeneration in patients following spinal cord ... Although many therapeutic interventions have shown promise in treating spinal cord injury, focusing on a single aspect of repair cannot achieve successful and functional regeneration in patients following spinal cord injury. In this study, we applied a combinatorial approach for treating spinal cord injury involving neuroprotection and rehabilitation, exploiting cell transplantation and functional sensorimotor training to promote nerve regeneration and functional recovery. Here, we used a mouse model of thoracic contusive spinal cord injury to investigate whether the combination of bone marrow mesenchymal stem cell transplantation and exercise training has a synergistic effect on functional restoration. Locomotor function was evaluated by the Basso Mouse Scale, horizontal ladder test, and footprint analysis. Magnetic resonance imaging, histological examination, transmission electron microscopy observation, immunofluorescence staining, and western blotting were performed 8 weeks after spinal cord injury to further explore the potential mechanism behind the synergistic repair effect. In vivo, the combination of bone marrow mesenchymal stem cell transplantation and exercise showed a better therapeutic effect on motor function than the single treatments. Further investigations revealed that the combination of bone marrow mesenchymal stem cell transplantation and exercise markedly reduced fibrotic scar tissue, protected neurons, and promoted axon and myelin protection. Additionally, the synergistic effects of bone marrow mesenchymal stem cell transplantation and exercise on spinal cord injury recovery occurred via the PI3 K/AKT/mTOR pathway. In vitro, experimental evidence from the PC12 cell line and primary cortical neuron culture also demonstrated that blocking of the PI3 K/AKT/mTOR pathway would aggravate neuronal damage. Thus, bone marrow mesenchymal stem cell transplantation combined with exercise training can effectively restore motor function after spinal cord injury by activating the PI3 K/AKT/mTOR pathway. 展开更多
关键词 axon growth bone marrow mesenchymal stem cell exercise training mTOR neuroprotection NEUROTROPHIN REMYELINATION scar formation spinal cord injury synaptic plasticity
下载PDF
Overexpression of vascular endothelial growth factor enhances the neuroprotective effects of bone marrow mesenchymal stem cell transplantation in ischemic stroke 被引量:1
13
作者 Cui Liu Zhi-Xiang Yang +6 位作者 Si-Qi Zhou Ding Ding Yu-Ting Hu Hong-Ning Yang Dong Han Shu-Qun Hu Xue-Mei Zong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1286-1292,共7页
Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endot... Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endothelial growth factor(VEGF)on behavioral defects in a rat model of transient cerebral ischemia,which was induced by middle cerebral artery occlusion.VEGF-BMSCs or control grafts were injected into the left striatum of the infarcted hemisphere 24 hours after stroke.We found that compared with the stroke-only group and the vehicle-and BMSCs-control groups,the VEGF-BMSCs treated animals displayed the largest benefits,as evidenced by attenuated behavioral defects and smaller infarct volume 7 days after stroke.Additionally,VEGF-BMSCs greatly inhibited destruction of the blood-brain barrier,increased the regeneration of blood vessels in the region of ischemic penumbra,and reducedneuronal degeneration surrounding the infarct core.Further mechanistic studies showed that among all transplant groups,VEGF-BMSCs transplantation induced the highest level of brain-derived neurotrophic factor.These results suggest that BMSCs transplantation with vascular endothelial growth factor has the potential to treat ischemic stroke with better results than are currently available. 展开更多
关键词 bone marrow mesenchymal stem cell brain-derived neurotrophic factor CD31 microtubule associated protein 2 middle cerebral artery occlusion stroke transplantation vascular endothelial growth factor
下载PDF
A novel mutation in ROR2 led to the loss of function of ROR2 and inhibited the osteogenic differentiation capability of bone marrow mesenchymal stem cells(BMSCs)
14
作者 WENQI CHEN XIAOYANG CHU +6 位作者 YANG ZENG YOUSHENG YAN YIPENG WANG DONGLAN SUN DONGLIANG ZHANG JING ZHANG KAI YANG 《BIOCELL》 SCIE 2023年第7期1561-1569,共9页
Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study... Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome(ARRS).This study attempted to explore the impact of the ROR2:c.904C>T variant specifically on the osteogenic differentiation of BMSCs.Methods:Coimmunoprecipitation(CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a.Double-immunofluorescence staining was used for determining the expressions and co-localization of ROR2 and Wnt5a in bone marrow mesenchymal stem cells(BMSCs).Western blot(WB)analysis and quantitative reverse transcription polymerase chain reaction(RT-qPCR)were conducted to identify the expression levels of ROR2 in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T.The alkaline phosphatase(ALP)activity was detected,and Alizarin Red S staining was done for evaluating the osteogenic differentiation of BMSCs.RT-qPCR was employed to identify the expression of the sphingomyelin synthase 1(SMS1)mRNA in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T and the mRNA expression levels of Runt-related transcription factor 2(RUNX2),osteocalcin(OCN),and osteopontin(OPN).WB was performed to confirm the protein expressions of extracellular regulated protein kinases1(ERK),P-ERK,Smad family member1/5/8(Smad1/5/8),P-Smad1/5/8,P-P38,P38,RUNX2,OCN,and OPN in the BMSCs transfected with LV-shROR2/LV-ROR2-c.904C>T and sphingomyelin(SM).Results:The ROR2:c.904C>T mutant altered the subcellular localization of the ROR2 protein,which caused an impaired interaction between ROR2 and Wnt5a.The depletion of ROR2 restricted the osteogenic differentiation capability of BMSCs and downregulated the expression of SMS1.SM treatment could reverse the inhibition of osteoblastic differentiation in ROR2-depleted BMSCs.Conclusion:The findings of this work revealed that the ROR2:c.904C>T variant led to the loss of function of ROR2,which impaired the interaction between ROR2 and Wnt5a and also controlled the osteogenic differentiation capability of BMSCs.Furthermore,SM was revealed to be engaged in the osteoblastic differentiation of BMSCs regulated by ROR2,which renders SM a potential target in the therapy for ARRS. 展开更多
关键词 bone marrow mesenchymal stem cells ROR2 WNT5A Osteogenic differentiation SPHINGOMYELIN
下载PDF
Mammalian Ste20-like kinase 1 inhibition as a cellular mediator of anoikis in mouse bone marrow mesenchymal stem cells
15
作者 Tao Zhang Qian Zhang Wan-Cheng Yu 《World Journal of Stem Cells》 SCIE 2023年第3期90-104,共15页
BACKGROUND The low survival rate of mesenchymal stem cells(MSCs)caused by anoikis,a form of apoptosis,limits the therapeutic efficacy of MSCs.As a proapoptotic molecule,mammalian Ste20-like kinase 1(Mst1)can increase ... BACKGROUND The low survival rate of mesenchymal stem cells(MSCs)caused by anoikis,a form of apoptosis,limits the therapeutic efficacy of MSCs.As a proapoptotic molecule,mammalian Ste20-like kinase 1(Mst1)can increase the production of reactive oxygen species(ROS),thereby promoting anoikis.Recently,we found that Mst1 inhibition could protect mouse bone marrow MSCs(mBMSCs)from H 2 O 2-induced cell apoptosis by inducing autophagy and reducing ROS production.However,the influence of Mst1 inhibition on anoikis in mBMSCs remains unclear.AIM To investigate the mechanisms by which Mst1 inhibition acts on anoikis in isolated mBMSCs.METHODS Poly-2-hydroxyethyl methacrylate-induced anoikis was used following the silencing of Mst1 expression by short hairpin RNA(shRNA)adenovirus transfection.Integrin(ITGs)were tested by flow cytometry.Autophagy and ITGα5β1 were inhibited using 3-methyladenine and small interfering RNA,respe-ctively.The alterations in anoikis were measured by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling and anoikis assays.The levels of the anoikis-related proteins ITGα5,ITGβ1,and phospho-focal adhesion kinase and the activation of caspase 3 and the autophagy-related proteins microtubules associated protein 1 light chain 3 II/I,Beclin1 and p62 were detected by Western blotting.RESULTS In isolated mBMSCs,Mst1 expression was upregulated,and Mst1 inhibition significantly reduced cell apoptosis,induced autophagy and decreased ROS levels.Mechanistically,we found that Mst1 inhibition could upregulate ITGα5 and ITGβ1 expression but not ITGα4,ITGαv,or ITGβ3 expression.Moreover,autophagy induced by upregulated ITGα5β1 expression following Mst1 inhibition played an essential role in the protective efficacy of Mst1 inhibition in averting anoikis.CONCLUSION Mst1 inhibition ameliorated autophagy formation,increased ITGα5β1 expression,and decreased the excessive production of ROS,thereby reducing cell apoptosis in isolated mBMSCs.Based on these results,Mst1 inhibition may provide a promising strategy to overcome anoikis of implanted MSCs. 展开更多
关键词 Mouse bone marrow mesenchymal stem cell Mammalian sterile 20-like kinase 1 ANOIKIS Integrin Autophagy Reactive oxygen species
下载PDF
Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells:Advances and challenges
16
作者 Li-Yi Huang Xin Sun +3 位作者 Hong-Xia Pan Lu Wang Cheng-Qi He Quan Wei 《World Journal of Stem Cells》 SCIE 2023年第5期385-399,共15页
Spinal cord injury(SCI)is a devastating condition with complex pathological mechanisms that lead to sensory,motor,and autonomic dysfunction below the site of injury.To date,no effective therapy is available for the tr... Spinal cord injury(SCI)is a devastating condition with complex pathological mechanisms that lead to sensory,motor,and autonomic dysfunction below the site of injury.To date,no effective therapy is available for the treatment of SCI.Recently,bone marrow-derived mesenchymal stem cells(BMMSCs)have been considered to be the most promising source for cellular therapies following SCI.The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI.In this work,we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects:Neuroprotection,axon sprouting and/or regeneration,myelin regeneration,inhibitory microenvironments,glial scar formation,immunomodulation,and angiogenesis.Additionally,we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models. 展开更多
关键词 Spinal cord injury bone marrow derived mesenchymal stem cells Neuroprotection AXON MYELIN Inhibitory microenvironment
下载PDF
Exploring the Mechanism of CircRNA-vgll3 in Osteogenically Differentiated Human Bone Marrow Mesenchymal Stem Cells
17
作者 Yajie Huo Yu Mao +9 位作者 Fang Luo Fengjiao Zhang Lifang Xie Xiaoke Zhang Kai Liu Ling Sun Hongmei Liu Lige Song Huanhuan Wang Zhiqiang Kang 《Journal of Clinical and Nursing Research》 2023年第4期151-158,共8页
Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high... Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high-level group,circRNA-vgll3 low-level group,and negative control group(circRNA-vgll3 not transfected)according to the amount of transfection.The proliferation and apoptosis of BMSCs osteoblasts in each group were analyzed,and the alkaline phosphatase(ALP)activity,type I collagen gray value,bone morphogenetic protein 2(BMP-2),Runx2 protein,and mRNA expression levels were detected.Results:The circRNA-vgll3 low-level group had a significant inhibitory effect on the proliferation of BMSCs osteoblasts,and the apoptosis rate of the circRNA-vgll3 low-level group was significantly higher than that of the circRNA-vgll3 high-level group(P<0.05);ALP activity,type I collagen gray value,BMP-2,Runx2 protein,and mRNA expression levels in the high-level circRNA-vgll3 group were significantly higher than those in the low-level circRNA-vgll3 group,and the difference was statistically significant(P<0.05).Conclusion:Overexpression of circRNA-vgll3 can promote the osteogenic differentiation ability of BMSCs,while low expression of circRNA-vgll3 can inhibit the osteogenic differentiation ability of BMSCs.The main mechanism of action is that circRNA-vgll3 can affect osteogenic differentiation by regulating the Runx2 protein. 展开更多
关键词 CircRNA-vgll3 Osteogenic differentiation Human bone marrow mesenchymal stem cells Mechanism of action
下载PDF
Bone marrow-derived mononuclear stem cells in the treatment of retinal degenerations
18
作者 Diego García-Ayuso Johnny Di Pierdomenico +2 位作者 David García-Bernal Manuel Vidal-Sanz María P.Villegas-Pérez 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第9期1937-1944,共8页
Retinal degenerative diseases affecting the outer retina in its many forms(inherited,acquired or induced)are characterized by photoreceptor loss,and represent currently a leading cause of irreversible vision loss in t... Retinal degenerative diseases affecting the outer retina in its many forms(inherited,acquired or induced)are characterized by photoreceptor loss,and represent currently a leading cause of irreversible vision loss in the world.At present,there are very few treatments capable of preventing,recovering or reversing photoreceptor degeneration or the secondary retinal remodeling,which follows photoreceptor loss and can also cause the death of other retinal cells.Thus,these diseases are nowadays one of the greatest challenges in the field of ophthalmological research.Bone marrow derived-mononuclear stem cell transplantation has shown promising results for the treatment of photoreceptor degenerations.These cells may have the potential to slow down photoreceptor loss,and therefore should be applied in the early stages of photoreceptor degenerations.Furthermore,because of their possible paracrine effects,they may have a wide range of clinical applications,since they can potentially impact on several retinal cell types at once and photoreceptor degenerations can involve different cells and/or begin in one cell type and then affect adjacent cells.The intraocular injection of bone marrow derived-mononuclear stem cells also enhances the outcomes of other treatments aimed to protect photoreceptors.Therefore,it is likely that future investigations may combine bone marrow derived-mononuclear stem cell therapy with other systemic or intraocular treatments to obtain greater therapeutic effects in degenerative retinal diseases. 展开更多
关键词 age-related macular degeneration bone marrow stem cells intravitreal injection macroglia MICROGLIA photoreceptor degeneration retinal ganglion cells retinitis pigmentosa subretinal injection TRANSPLANT
下载PDF
Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis 被引量:74
19
作者 Mehdi Mohamadnejad Mehrnaz Namiri +6 位作者 Mohamad Bagheri Seyed Masiha Hashemi Hossein Ghanaati Narges Zare Mehrjardi Saeed Kazemi Ashtiani Reza Malekzadeh Hossein Baharvand 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第24期3359-3363,共5页
AIM: To evaluate safety and feasibility of autologous bone marrow-enriched CD34+ hematopoietic stem cell Tx through the hepatic artery in patients with decompensated cirrhosis.METHODS: Four patients with decompensated... AIM: To evaluate safety and feasibility of autologous bone marrow-enriched CD34+ hematopoietic stem cell Tx through the hepatic artery in patients with decompensated cirrhosis.METHODS: Four patients with decompensated cirrhosis were included. Approximately 200 mL of the bone marrow of the patients was aspirated, and CD34+ stem cells were selected. Between 3 to 10 million CD34+ cells were isolated. The cells were slowly infused through the hepatic artery of the patients.RESULTS: Patient 1 showed marginal improvement in serum albumin and no significant changes in other test results. In patient 2 prothrombin time was decreased; however, her total bilirubin, serum creatinine, and Model of End-Stage Liver Disease (MELD) score worsened at the end of follow up. In patient 3 there was improvement in serum albumin, porthrombin time (PT), and MELD score. Patient 4 developed radiocontrast nephropathy after the procedure, and progressed to type 1 hepatorenal syndrome and died of liver failure a few days later. Because of the major side effects seen in the last patient, the trial was prematurely stopped.CONCLUSION: Infusion of CD34+ stem cells through the hepatic artery is not safe in decompensated cirrhosis. Radiocontrast nephropathy and hepatorenal syndrome could be major side effects. However, this study doesnot preclude infusion of CD34+ stem cells through other routes. 展开更多
关键词 骨髓 增殖细胞 移植技术 肝疾病
下载PDF
Bone marrow-derived mesenchymal stem cell therapy for decompensated liver cirrhosis:A meta-analysis 被引量:17
20
作者 Xing-Nan Pan Lian-Qiu Zheng Xiao-Huan Lai 《World Journal of Gastroenterology》 SCIE CAS 2014年第38期14051-14057,共7页
AIM:To assess the efficacy and safety of bone marrow-derived mesenchymal stem cell(BM-MSC) in the treatment of decompensated liver cirrhosis.METHODS:The search terms "bone marrow stem cell" "chronic liv... AIM:To assess the efficacy and safety of bone marrow-derived mesenchymal stem cell(BM-MSC) in the treatment of decompensated liver cirrhosis.METHODS:The search terms "bone marrow stem cell" "chronic liver disease" "transfusion" and "injection" were used in the Cochrane Library,Med-Line(Pub-Med) and Embase without any limitations with respect to publication date or language. Journals were also handsearched and experts in the field were contacted. The studies which used BM-MSC in the treatment of any chronic liver disease were included. Comprehensive Review Manager and Meta-Analyst software were used for statistical analysis. Publication bias was evaluated using Begg's test.RESULTS:Out of 78 studies identified,five studies were included in the final analysis.The studies were conducted in China,Iran,Egypt and Brazil.Analysis of pooled data of two controlled studies by Review Manager showed that the mean decline in scores for the model for end-stage liver disease(MELD)was-1.23[95%CI:-2.45-(-0.01)],-1.87[95%CI:-3.16-(-0.58)],-2.01[95%CI:-3.35-(-0.68)]at 2,4 and 24 wk,respectively after transfusion.Meta-analysis of the 5studies showed that the mean improvement in albumin levels was-0.28,2.60,5.28,4.39 g/L at the end of 8,16,24,and 48 wk,respectively,after transfusion.MELD scores,alanine aminotransferase,total bilirubin levels and prothrombin times improved to some extent.BMMSC injections resulted in no serious adverse events or complications.CONCLUSION:BM-MSC infusion in the treatment of decompensated liver cirrhosis improved liver function.At the end of year 1,there were no serious side effects or complications. 展开更多
关键词 DECOMPENSATED liver CIRRHOSIS bone mar-row stem ce
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部