Objective:To investigate the effects of bone marrow-derived mesenchymal stem cells(BMSCs)on the proliferation and secretion of IgM,IgG and IL-2 in spleen lymphocytes(L)of aging rats.Methods:BMSCs were isolated by the ...Objective:To investigate the effects of bone marrow-derived mesenchymal stem cells(BMSCs)on the proliferation and secretion of IgM,IgG and IL-2 in spleen lymphocytes(L)of aging rats.Methods:BMSCs were isolated by the whole bone marrow adherence method and characterized.A rat model of aging was produced by daily subcutaneous injection of D-galactose into the back of the neck.Rat spleen lymphocyte isolate kit to isolate spleen lymphocytes from aging rats and young rats.In vitro,the co-culture system of BMSCs and aging rats lymphocytes was established,and under the induction of mitogen LPS and ConA,the proliferative activity of lymphocytes in each group was detected by CCK-8 assay,the levels of IgM and IgG in the culture supernatant of each group was detected by ELISA,and the IL-2 radioimmunoassay kits were used to detect the content of IL-2 in the supernatant of each group.Results:(1)The isolated adherent cells showed the characteristics of BMSCs,including spindle-shaped morphology,high expression of CD29,CD44,low expression of CD34 and CD45,and osteogenic/adipogenic ability.(2)Under LPS induction,lymphocyte proliferative activity and secretion of immunoglobulin IgG were reduced in the aging group compared with the young group,and co-culture with BMSCs reversed this trend.(3)Under ConA induction,the IL-2 content of BMSCs co-cultured with aging lymphocytes was higher than that of aging lymphocytes alone(P<0.0001);the IL-2 content of CsA co-cultured with aging lymphocytes was lower than that of aging lymphocytes alone(P<0.0001).Conclusion:BMSCs have immunomodulatory effects on the spleen lymphocytes of aging rats in vitro.展开更多
Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analys...Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression.展开更多
Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesen- chymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and...Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesen- chymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and whether engrafted donor cells can survive and transdifferentiated into cardiomyocytes. Methods: Twenty milliliters bone marrow was obtained from healthy men by bone biopsy. A gradient centrifugation method was used to separate bone marrow cells (BMCs) and red blood cells. BMCs were incubated for 48 h and then washed with phosphate-buffered saline (PBS). The culture medium was changed twice a week for 28 d. Finally, hematopoietic cells were washed away to leave only MSCs. Human MSCs (hMSCs) were premarked by BrdU 72 h before the transplantation. Thirty-four New Zealand rabbits were randomly divided into myocardial infarction (MI) control group and cell treated group, which received hMSCs (MI+MSCs) through intramyocardial injection, while the control group received the same volume of PBS. Myocardial infarction was induced by ligation of the left coronary artery. Cell treated rabbits were treated with 5×106 MSCs transplanted into the infarcted region after ligation of the coronary artery for 1 h, and the control group received the same volume of PBS. Cyclosporin A (oral solution; 10 mg/kg) was provided alone, 24 h before surgery and once a day after MI for 4 weeks. Echocardiography was measured in each group before the surgery and 4 weeks after the surgery to test heart function change. The hearts were harvested for HE staining and immunohistochemical studies after MI and cell transplantation for 4 weeks. Results: Our data showed that cardiac function was significantly improved by hMSC transplan- tation in rabbit infarcted hearts 4 weeks after MI (ejection fraction: 0.695±0.038 in the cell treated group (n=12) versus 0.554±0.065 in the control group (n=13) (P<0.05). Surviving hMSCs were identified by BrdU positive spots in infarcted region and transdifferentiated into cardiomyocytes characterized with a positive cardiac phenotype: troponin I. Conclusion: Transplan- tation of hMSCs could transdifferentiate into cardiomyocytes and regenerate vascular structures, contributing to functional im- provement.展开更多
Sodium nitrite(Na NO2) is an inorganic salt used broadly in chemical industry. Na NO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells(MSCs) are capable of differentiating into a variety ...Sodium nitrite(Na NO2) is an inorganic salt used broadly in chemical industry. Na NO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells(MSCs) are capable of differentiating into a variety of tissue specific cells and MSC therapy is a potential method for improving brain functions. This work aims to investigate the possible therapeutic role of bone marrow-derived MSCs against Na NO2 induced hypoxic brain injury. Rats were divided into control group(treated for 3 or 6 weeks), hypoxic(HP) group(subcutaneous injection of 35 mg/kg Na NO2 for 3 weeks to induce hypoxic brain injury), HP recovery groups N-2 w R and N-3 w R(treated with the same dose of Na NO2 for 2 and 3 weeks respectively, followed by 4-week or 3-week self-recovery respectively), and MSCs treated groups N-2 w SC and N-3 w SC(treated with the same dose of Na NO2 for 2 and 3 weeks respectively, followed by one injection of 2 × 106 MSCs via the tail vein in combination with 4 week self-recovery or intravenous injection of Na NO2 for 1 week in combination with 3 week self-recovery). The levels of neurotransmitters(norepinephrine, dopamine, serotonin), energy substances(adenosine monophosphate, adenosine diphosphate, adenosine triphosphate), and oxidative stress markers(malondialdehyde, nitric oxide, 8-hydroxy-2′-deoxyguanosine, glutathione reduced form, and oxidized glutathione) in the frontal cortex and midbrain were measured using high performance liquid chromatography. At the same time, hematoxylin-eosin staining was performed to observe the pathological change of the injured brain tissue. Compared with HP group, pathological change of brain tissue was milder, the levels of malondialdehyde, nitric oxide, oxidized glutathione, 8-hydroxy-2′-deoxyguanosine, norepinephrine, serotonin, glutathione reduced form, and adenosine triphosphate in the frontal cortex and midbrain were significantly decreased, and glutathione reduced form/oxidized glutathione and adenosine monophosphate/adenosine triphosphate ratio were significantly increased in the MSCs treated groups. These findings suggest that bone marrow-derived MSCs exhibit neuroprotective effects against Na NO2-induced hypoxic brain injury through exerting anti-oxidative effects and providing energy to the brain.展开更多
The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils,...The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula.展开更多
Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and ident...Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow- derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesencaymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis iden:ified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathv/ays were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).展开更多
In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in s...In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer's disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus.展开更多
Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbits were divided into 3 gr...Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbits were divided into 3 groups, heart infarcted model with MSCs transplanted treatment (MSCs group, n=12), heart infarcted model with PBS injection (control group, n=20), sham operation with PBS injection (sham group, n=17). MSCs labelled by BrdUrd were injected into the MI area of the MSCs group. The same volume of PBS was injected into the MI area of the control group and sham group. The mortality, LVIDd, LVIDs and LVEF of the two groups were compared 4 weeks later. Tropomyosin inhibitory component (Tn I) and BrdUrd immunohistochemistry identified the engrafted cells 4 weeks after transplantation. Result: The mortality of the MSCs group was 16.7% (2/12), and remarkably lower than the control group's mortality [35% (7/20) (P<0.05)]. Among the animals that survived for 4 weeks, the LVIDd and LVIDs of the MSCs group after operation were 1.17±0.21 cm and 0.74±0.13 cm, and remarkably lower than those of the model group, which were 1.64±0.14 cm and 1.19±0.12 cm (P<0.05); the LVEF of the MSCs group after operation was 63±6%, and remarkably higher than that of the model group, which was 53±6% (P<0.05). Among the 10 cases of animals that survived for 4 weeks in the MSCs group, in 8 cases (80%), the transplanted cells survived in the non MI, MI region and its periphery, and even farther away; part of them differentiated into cardiomyocytes; in 7 cases (70%), the transplanted cells participated in the formation of blood vessel tissue in the MI region. Conclusion: Transplanted allograftic MSCs can survive and differentiate into cardiomyocytes, form the blood vessels in the MI region. MSCs transplantation could improve the heart function after MI.展开更多
Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes a...Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.展开更多
hypoxicischemic brain injury;however,the therapeutic efficacy of bone marrow-derived mesenchymal stem cells largely depends on the number of cells that are successfully transferred to the target.Magnet-targeted drug d...hypoxicischemic brain injury;however,the therapeutic efficacy of bone marrow-derived mesenchymal stem cells largely depends on the number of cells that are successfully transferred to the target.Magnet-targeted drug delivery systems can use a specific magnetic field to attract the drug to the target site,increasing the drug concentration.In this study,we found that the double-labeling using superparamagnetic iron oxide nanoparticle and poly-L-lysine(SPIO-PLL)of bone marrow-derived mesenchymal stem cells had no effect on cell survival but decreased cell proliferation 48 hours after labeling.Rat models of hypoxic-ischemic brain injury were established by ligating the left common carotid artery.One day after modeling,intraventricular and caudal vein injections of 1×105 SPIO-PLL-labeled bone marrow-derived mesenchymal stem cells were performed.Twenty-four hours after the intraventricular injection,magnets were fixed to the left side of the rats’heads for 2 hours.Intravoxel incoherent motion magnetic resonance imaging revealed that the perfusion fraction and the diffusion coefficient of rat brain tissue were significantly increased in rats treated with SPIO-PLL-labeled cells through intraventricular injection combined with magnetic guidance,compared with those treated with SPIO-PLL-labeled cells through intraventricular or tail vein injections without magnetic guidance.Hematoxylin-eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling(TUNEL)staining revealed that in rats treated with SPIO-PLL-labeled cells through intraventricular injection under magnetic guidance,cerebral edema was alleviated,and apoptosis was decreased.These findings suggest that targeted magnetic guidance can be used to improve the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for hypoxic-ischemic brain injury.This study was approved by the Animal Care and Use Committee of The Second Hospital of Dalian Medical University,China(approval No.2016-060)on March 2,2016.展开更多
In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesen...In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal a-synuclein accumulation in cells Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and dopamine secretion in a cell dose-dependent manner. MitoLight staining was used to confirm that PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells demonstrate reduced levels of cell apoptosis. Immunocytochemistry and western blot analysis found the quantity of α-synuclein accumulation was significantly reduced in PC12 cell and bone marrow-derived mesenchymal stem cell co-cultures. These results indicate that bone marrow-derived mesenchymal stem cells can attenuate 6-hydroxydopamine-induced cytotoxicity by reducing abnormal α-synuclein accumulation in PC12 cells.展开更多
A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and wer...A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro.展开更多
The time point at which bone marrow-derived mesenchymal stem cells(BMSCs)can be used in transplantation for the treatment of ischemic brain injury remains unclear.In the present study,BMSCs were transplanted to the ...The time point at which bone marrow-derived mesenchymal stem cells(BMSCs)can be used in transplantation for the treatment of ischemic brain injury remains unclear.In the present study,BMSCs were transplanted to the ischemic site 90 minutes post-ischemia.The results demonstrated that the transplanted BMSCs improved neurological function,reduced infarct volume,increased survivin expression,decreased caspase-3 expression and reduced apoptosis.This suggests that BMSCs transplanted at an ultra-early stage ameliorated brain ischemia by increasing survivin expression,decreasing caspase-3 expression and reducing apoptosis at the ischemia/reperfusion injury site.展开更多
BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide.These defects generally result from severe trauma or resection of a whole large tumour.Autologous bone graft...BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide.These defects generally result from severe trauma or resection of a whole large tumour.Autologous bone grafts are the current gold standard for the reconstruction of such defects.However,due to increased patient morbidity and the need for a second operative site,other lines of treatment should be introduced.To find alternative unconventional therapies to manage such defects,bone tissue engineering using a combination of suitable bioactive factors,cells,and biocompatible scaffolds offers a promising new approach for bone regeneration.AIM To evaluate the healing capacity of platelet-rich fibrin(PRF)membranes seeded with allogeneic mesenchymal bone marrow-derived stem cells(BMSCs)on critically sized mandibular defects in a rat model.METHODS Sixty-three Sprague Dawley rats were subjected to bilateral bone defects of critical size in the mandibles created by a 5-mm diameter trephine bur.Rats were allocated to three equal groups of 21 rats each.Group I bone defects were irrigated with normal saline and designed as negative controls.Defects of group II were grafted with PRF membranes and served as positive controls,while defects of group III were grafted with PRF membranes seeded with allogeneic BMSCs.Seven rats from each group were killed at 1,2 and 4 wk.The mandibles were dissected and prepared for routine haematoxylin and eosin(HE)staining,Masson's trichrome staining and CD68 immunohistochemical staining.RESULTS Four weeks postoperatively,the percentage area of newly formed bone was significantly higher in group III(0.88±0.02)than in groups I(0.02±0.00)and II(0.60±0.02).The amount of granulation tissue formation was lower in group III(0.12±0.02)than in groups I(0.20±0.02)and II(0.40±0.02).The number of inflammatory cells was lower in group III(0.29±0.03)than in groups I(4.82±0.08)and II(3.09±0.07).CONCLUSION Bone regenerative quality of critically sized mandibular bone defects in rats was better promoted by PRF membranes seeded with BMSCs than with PRF membranes alone.展开更多
BACKGROUND: Stereotactic injection (striatum or lateral ventricle) and vascular injection ( tail vein or carotid artery) are now often used in cellular therapy for cerebral infarction. Stereotactic injection can ...BACKGROUND: Stereotactic injection (striatum or lateral ventricle) and vascular injection ( tail vein or carotid artery) are now often used in cellular therapy for cerebral infarction. Stereotactic injection can accurately deliver cells to the infarct area, but requires a stereotactic device and causes secondary trauma; vascular injection is easy and better for host neurological deficit recovery, but can cause thrombosis. OBJECTIVE: To compare the therapeutic potential of adult bone marrow-derived mesenchymal stem cells (BMSCs) transplantation by intraperitoneal versus intravenous administration to cerebral ischemic rats. DESIGN, TIME AND SE'B'ING: A randomized controlled animal experiment was performed at the Cell Room and Pathology Laboratory, Brain Hospital Affiliated to Nanjing Medical University from November 2007 to September 2008. MATERIALS: BMSCs were derived from 20 healthy Sprague-Dawley rats aged 4-6 weeks. METHODS: Forty-five adult middle cerebral artery occlusion (MCAO) rats were randomly divided into control, intravenous and intraperitoneal injection groups, with 15 rats in each group. At 21 days after modeling, rats in the control group received 1 mL of 0.01 mol/L phosphate buffered saline via tail vein injection and each experimental rat received 4 x 106 BMSCs labeled by bromodeoxyuridine (BrdU) via intravenous or intraperitoneal injection. MAIN OUTCOME MEASURES: Angiogenin expression and survival of transplanted cells were measured by immunohistochemical staining of brain tissue in infarction hemisphere at 7, 14 or 21 days after BMSC transplantation. Co-expression of BrdU/microtubule-associated protein 2 or BrdU/glial fibrillary acidic protein was observed by double-labeled immunofluorescence of cerebral cortex. Evaluation of nerve function adhesion-removal test was performed on the 14 or 21 days after BMSCs treatment. using the neurological injury severity score and the 1st and 21st day before and after MCAO, and at 3, 7 RESULTS: Angiogenin-positive new vessels were distributed in the bilateral striatum, hippocampus and cerebral cortex of each group of rats at each time point, most markedly in the intravenous injection group. There were significantly more BrdU-positive cells in the intravenous injection group than in the intraperitoneal injection group (P 〈 0.01). Co-expression of BrdU/ microtubule-associated protein 2 or BrdU/glial fibrillary acidic protein were almost only seen in the intravenous group by fluorescence microscopy. After transplantation, BMSCs significantly restored nerve function in rats, particularly in the intravenous injection group. CONCLUSION: BMSCs were able to enter brain tissue via the tail vein or peritoneal injection and improve neurological function by promoting the regeneration of nerves and blood vessels in vivo, more effectively after intravenous than intraperitoneal injection.展开更多
BACKGROUND: It has been proved by many experimental studies from the aspects of morphology and immunocytochemistry in recent years that bone marrow stromal cells (BMSCs) can in vitro induce and differentiate into t...BACKGROUND: It has been proved by many experimental studies from the aspects of morphology and immunocytochemistry in recent years that bone marrow stromal cells (BMSCs) can in vitro induce and differentiate into the cells possessing the properties of nerve cells. But the functions of BMSCs-derived neural stem cells(NSCs) and the differentiated neuron-like cells are still unclear. OBJECTIVE: To observe whether bone marrow-derived NSCs can secrete norepinephrine (NE) under the condition of in vitro culture, induce and differentiation, and analyze the biochemical properties of BMSCs-derived NSCs. DESIGN: A non-randomized and controlled experimental observation SETTING : Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University MATERIALS: This experiment was carried out in the Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University. The bone marrow used in the experiment was collected from 1.5- month-old healthy New Zealand white rabbits. METHODS: This experiment was carried out in the Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University. The bone marrow used in the experiment was collected from 1.5 month-old healthy New Zealand white rabbits. BMSCs of rabbits were isolated and performed in vitro culture, induce and differentiation with culture medium of NSCs and differentiation-inducing factor, then identified with immunocytochemical method. Experimental grouping: ①Negative control group: L-02 hepatic cell and RPMI1640 culture medium were used. ② Background culture group: Only culture medium of NSCs as culture solution was added into BMSCs to perform culture, and 0.1 volume fraction of imported fetal bovine serum was supplemented 72 hours later. ③Differentiation inducing factor group: After culture for 72 hours, retinoic acid and glial cell line-derived neurotrophic factors were added in the culture medium of BMSCs and NSCs as corresponding inducing factors. The level of NE in each group was detected on the day of culture and 5, 7, 14 and 20 days after culture with high performance liquid chromatography (HPLC). The procedure was conducted 3 times in each group.Standard working curve was made according to the corresponding relationship of NE concentration and peak area. The concentration of NE every 1×10^7 cells was calculated according to standard curve and cell counting. MAIN OUTCOME MEASURES : The level of NE of cultured cells was detected with HPLC; immunocytochemistrical identification of Nestin and neuron specific nuclear protein was performed. RESULTS: ① On the 14^th day after cell culture, BMSCs turned into magnus and round cells which presented Nestin-positive antigen, then changed into neuron-like cells with long processus and presented neuron specific nuclear protein -positive antigen at the 20^th day following culture. ② The ratio of NE concentration and peak area has good linear relationship, and regression equation was Y=1.168 36+0.000 272 8X,r=-0.998 4. Coefficient variation (CV) was 〈 5% and the recovery rate was 92.39%( Y referred to concentration and X was peak area).③NE was well detached within 10 minutes under the condition of this experiment. ④ NE was detected in NSCs and their culture mediums, which were cultured for 7, 14 and 20 days respectively, but no NE in BMSCs, NSCs-free culture medium and L-02 hepatic cell which were as negative control under the HPLC examination. Analysis of variance showed that the level of NE gradually increased following the elongation of culture time (P 〈 0.01 ). No significant difference in the level of NE existed at the same time between differentiation inducing factor group and basic culture group(P 〉 0.05). CONCLUSION : BMSCs of rabbits can proliferate in vitro and express Nestin antigen; They can differentiate into neuron-like cells, express specific neucleoprotein of mature neurons, synthesize and secrete NE as a kind of neurotransmitter.展开更多
BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson’s disease have solely focused on in vivo animal models. Because of the number of influencing factors...BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson’s disease have solely focused on in vivo animal models. Because of the number of influencing factors, it has been difficult to determine a consistent outcome. OBJECTIVE: To establish an injury model in brain slices of substantia nigra and striatum using 1-methyl-4-phenylpytidinium ion (MPP+), and to investigate the effect of MSCs on dopaminergic neurons following MPP+ induced damage. DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, animal experiment using I mmunohistochemistry was performed at the Laboratory of the Department of Anatomy, Fudan University between January 2004 and December 2006. MATERIALS: Primary MSC cultures were obtained from femurs and tibias of adult Sprague Dawley rats. Organotypic brain slices were isolated from substantia nigra and striatum of 1-day-old Sprague Dawley rat pups. Monoclonal antibodies for tyrosine hydroxylase (TH, 1:5 000) were from Santa Cruz (USA); goat anti-rabbit IgG antibodies labeled with FITC were from Boster Company (China). METHODS: Organotypic brain slices were cultured for 5 days in whole culture medium supplemented with 50% DMEM, 25% equine serum, and 25% Tyrode’s balanced salt solution. The medium was supplemented with 5 μg/mL Ara-C, and the culture was continued for an additional 5 days. The undergrowth of brain slices was discarded at day 10. Eugonic brain slices were cultured with basal media for an additional 7 days. The brain slices were divided into three groups: control, MPP+ exposure, and co-culture. For the MPP+ group, MPP+ (30 μmol/L) was added to the media at day 17 and brain slices were cultured for 4 days, followed by control media. For the co-culture group, the MPP+ injured brain slices were placed over MSCs in the well and were further cultured for 7 days. MAIN OUTCOME MEASURES: After 28 days in culture, neurite outgrowth was examined in the brain slices under phase-contrast microscopy. The percent of area containing dead cells in each brain slice was calculated with the help of propidium iodide fluorescence. Brain slices were stained with antibodies for TH to indicate the presence of dopaminergic neurons. Transmission electron microscopy was applied to determine the effect of MSCs on neuronal ultrastructure. RESULTS: Massive cell death and neurite breakage was observed in the MPP+ group. In addition, TH expression was significantly reduced, compared to the control group (P 〈 0.01). After 7 days in culture with MSCs, the co-culture group presented with less cell damage and reduced neurite breakage, and TH expression was increased. However, these changes were not significantly different from the MPP+ group (P 〈 0.01). Electron microscopy revealed reduced ultrastructural injury to cells in the brain slices. However, vacuoles were present in cells, with some autophagic vacuoles. CONCLUSION: Bone marrow-derived MSCs can promote survival of dopaminergic neurons following MPP+-induced neurotoxicity in co-cultures with substantia nigra and striatum brain slices.展开更多
BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated pr...BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated protein 43 (GAP-43) and neural cell adhesion molecule following BMSC transplantation to the lateral ventricle in rats with acute focal cerebral ischemic brain damage. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment using immunohistochemistry was performed at the laboratories of Department of Neurology, Renmin Hospital of Wuhan University and Doctoral Scientific Research Work Station of C-BONS PHARMA, Hubei Province, China, from January 2007 to December 2008. MATERIALS: Monoclonal mouse anti-rat 5-bromo-2-deoxyuridine and neural cell adhesion molecule antibodies were purchased from Sigma, USA; monoclonal mouse anti-rat GAP-43 antibody was purchased from Wuhan Boster, China. METHODS: Rat models of right middle cerebral artery occlusion were established using the thread method. At 1 day after middle cerebral artery occlusion, 20μL culture solution, containing 5×10^5 BMSCs, was transplanted to the left lateral ventricle using micro-injection. MAIN OUTCOME MEASURES: Scores of neurological impairment were measured to assess neural function. Expression of GAP-43 and neural cell adhesion molecule at the lesion areas was examined by immunohistochemistry. RESULTS: GAP-43 and neural cell adhesion molecule expression was low in brain tissues of the sham-operated group, but expression increased at the ischemic boundary (P 〈 0.05). Transplantation of BMSCs further enhanced expression of GAP-43 and neural cell adhesion molecule (P 〈 0.05) and remarkably improved neurological impairment of ischemic rats (P 〈 0.05). CONCLUSION: BMSC transplantation promoted neurological recovery in rats by upregulating expression of GAP-43 and neural cell adhesion molecule.展开更多
Stem cell therapy (SCT) is a promising and prospective approach in the treatment of patients with severe peripheral arterial disorders, primarily with Buerger’s disease. However, very little is known about the durati...Stem cell therapy (SCT) is a promising and prospective approach in the treatment of patients with severe peripheral arterial disorders, primarily with Buerger’s disease. However, very little is known about the duration of the effect of SCT, and to our best knowledge no data are available on the efficacy and safety of repeated SCT in patients with Buerger’s disease. Here we report on two patients with severe Buerger’s disease, who received repeated autologous bone marrow-derived stem cell therapy. Our results show that a second SCT, applied to a previously treated leg 30 or 36 months after the first treatment was efficient in both cases. After twelve months, the clinical state of the repeatedly treated lower limb improved spectacularly and non-healing ulcers healed more rapidly than after the first SCT. No severe adverse events were detected. Thus repeated SCT offers a safe and efficient treatment option for relapsing patients at the advanced stage of Buerger’s disease.展开更多
基金supported by joint funds for the innovation of science and technology,Fujian province(2020Y9027)Fujian Natural Science Foundation(2020J011062)Medical Innovation Project of Fujian Provincial Health Commission(2021CXA004).
文摘Objective:To investigate the effects of bone marrow-derived mesenchymal stem cells(BMSCs)on the proliferation and secretion of IgM,IgG and IL-2 in spleen lymphocytes(L)of aging rats.Methods:BMSCs were isolated by the whole bone marrow adherence method and characterized.A rat model of aging was produced by daily subcutaneous injection of D-galactose into the back of the neck.Rat spleen lymphocyte isolate kit to isolate spleen lymphocytes from aging rats and young rats.In vitro,the co-culture system of BMSCs and aging rats lymphocytes was established,and under the induction of mitogen LPS and ConA,the proliferative activity of lymphocytes in each group was detected by CCK-8 assay,the levels of IgM and IgG in the culture supernatant of each group was detected by ELISA,and the IL-2 radioimmunoassay kits were used to detect the content of IL-2 in the supernatant of each group.Results:(1)The isolated adherent cells showed the characteristics of BMSCs,including spindle-shaped morphology,high expression of CD29,CD44,low expression of CD34 and CD45,and osteogenic/adipogenic ability.(2)Under LPS induction,lymphocyte proliferative activity and secretion of immunoglobulin IgG were reduced in the aging group compared with the young group,and co-culture with BMSCs reversed this trend.(3)Under ConA induction,the IL-2 content of BMSCs co-cultured with aging lymphocytes was higher than that of aging lymphocytes alone(P<0.0001);the IL-2 content of CsA co-cultured with aging lymphocytes was lower than that of aging lymphocytes alone(P<0.0001).Conclusion:BMSCs have immunomodulatory effects on the spleen lymphocytes of aging rats in vitro.
基金the Plan Program of Shenyang Science and Technology Bureau, No. 1091161-0-00
文摘Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression.
基金Project (No. 301549) supported by the Natural Science Foundation of ZhejiangChina
文摘Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesen- chymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and whether engrafted donor cells can survive and transdifferentiated into cardiomyocytes. Methods: Twenty milliliters bone marrow was obtained from healthy men by bone biopsy. A gradient centrifugation method was used to separate bone marrow cells (BMCs) and red blood cells. BMCs were incubated for 48 h and then washed with phosphate-buffered saline (PBS). The culture medium was changed twice a week for 28 d. Finally, hematopoietic cells were washed away to leave only MSCs. Human MSCs (hMSCs) were premarked by BrdU 72 h before the transplantation. Thirty-four New Zealand rabbits were randomly divided into myocardial infarction (MI) control group and cell treated group, which received hMSCs (MI+MSCs) through intramyocardial injection, while the control group received the same volume of PBS. Myocardial infarction was induced by ligation of the left coronary artery. Cell treated rabbits were treated with 5×106 MSCs transplanted into the infarcted region after ligation of the coronary artery for 1 h, and the control group received the same volume of PBS. Cyclosporin A (oral solution; 10 mg/kg) was provided alone, 24 h before surgery and once a day after MI for 4 weeks. Echocardiography was measured in each group before the surgery and 4 weeks after the surgery to test heart function change. The hearts were harvested for HE staining and immunohistochemical studies after MI and cell transplantation for 4 weeks. Results: Our data showed that cardiac function was significantly improved by hMSC transplan- tation in rabbit infarcted hearts 4 weeks after MI (ejection fraction: 0.695±0.038 in the cell treated group (n=12) versus 0.554±0.065 in the control group (n=13) (P<0.05). Surviving hMSCs were identified by BrdU positive spots in infarcted region and transdifferentiated into cardiomyocytes characterized with a positive cardiac phenotype: troponin I. Conclusion: Transplan- tation of hMSCs could transdifferentiate into cardiomyocytes and regenerate vascular structures, contributing to functional im- provement.
文摘Sodium nitrite(Na NO2) is an inorganic salt used broadly in chemical industry. Na NO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells(MSCs) are capable of differentiating into a variety of tissue specific cells and MSC therapy is a potential method for improving brain functions. This work aims to investigate the possible therapeutic role of bone marrow-derived MSCs against Na NO2 induced hypoxic brain injury. Rats were divided into control group(treated for 3 or 6 weeks), hypoxic(HP) group(subcutaneous injection of 35 mg/kg Na NO2 for 3 weeks to induce hypoxic brain injury), HP recovery groups N-2 w R and N-3 w R(treated with the same dose of Na NO2 for 2 and 3 weeks respectively, followed by 4-week or 3-week self-recovery respectively), and MSCs treated groups N-2 w SC and N-3 w SC(treated with the same dose of Na NO2 for 2 and 3 weeks respectively, followed by one injection of 2 × 106 MSCs via the tail vein in combination with 4 week self-recovery or intravenous injection of Na NO2 for 1 week in combination with 3 week self-recovery). The levels of neurotransmitters(norepinephrine, dopamine, serotonin), energy substances(adenosine monophosphate, adenosine diphosphate, adenosine triphosphate), and oxidative stress markers(malondialdehyde, nitric oxide, 8-hydroxy-2′-deoxyguanosine, glutathione reduced form, and oxidized glutathione) in the frontal cortex and midbrain were measured using high performance liquid chromatography. At the same time, hematoxylin-eosin staining was performed to observe the pathological change of the injured brain tissue. Compared with HP group, pathological change of brain tissue was milder, the levels of malondialdehyde, nitric oxide, oxidized glutathione, 8-hydroxy-2′-deoxyguanosine, norepinephrine, serotonin, glutathione reduced form, and adenosine triphosphate in the frontal cortex and midbrain were significantly decreased, and glutathione reduced form/oxidized glutathione and adenosine monophosphate/adenosine triphosphate ratio were significantly increased in the MSCs treated groups. These findings suggest that bone marrow-derived MSCs exhibit neuroprotective effects against Na NO2-induced hypoxic brain injury through exerting anti-oxidative effects and providing energy to the brain.
基金supported by the Natural Science Foundation of Anhui Province (Role of substance P in electroacupuncture for focal brain ischemia in rats), No. 050431003the National Natural Science Foundation of China (Target point and signal transduction pathway of Yangxin Tongmai active principle region for BMSCs), No. 81102595
文摘The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula.
基金supported by the National Natural Science Foundation of China,No.81330042,81620108018(both to SQF),and 81702147(to ZJW)
文摘Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow- derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesencaymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis iden:ified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathv/ays were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).
基金sponsored by Science and Technology Support for Major Projects of Hebei Province, No. 09276103DHebei Province Science and Technology Research and Development Program, No. 08206120D
文摘In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer's disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus.
基金Projects (No. 30240075) supported by the National Natural Science Foundation of China
文摘Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbits were divided into 3 groups, heart infarcted model with MSCs transplanted treatment (MSCs group, n=12), heart infarcted model with PBS injection (control group, n=20), sham operation with PBS injection (sham group, n=17). MSCs labelled by BrdUrd were injected into the MI area of the MSCs group. The same volume of PBS was injected into the MI area of the control group and sham group. The mortality, LVIDd, LVIDs and LVEF of the two groups were compared 4 weeks later. Tropomyosin inhibitory component (Tn I) and BrdUrd immunohistochemistry identified the engrafted cells 4 weeks after transplantation. Result: The mortality of the MSCs group was 16.7% (2/12), and remarkably lower than the control group's mortality [35% (7/20) (P<0.05)]. Among the animals that survived for 4 weeks, the LVIDd and LVIDs of the MSCs group after operation were 1.17±0.21 cm and 0.74±0.13 cm, and remarkably lower than those of the model group, which were 1.64±0.14 cm and 1.19±0.12 cm (P<0.05); the LVEF of the MSCs group after operation was 63±6%, and remarkably higher than that of the model group, which was 53±6% (P<0.05). Among the 10 cases of animals that survived for 4 weeks in the MSCs group, in 8 cases (80%), the transplanted cells survived in the non MI, MI region and its periphery, and even farther away; part of them differentiated into cardiomyocytes; in 7 cases (70%), the transplanted cells participated in the formation of blood vessel tissue in the MI region. Conclusion: Transplanted allograftic MSCs can survive and differentiate into cardiomyocytes, form the blood vessels in the MI region. MSCs transplantation could improve the heart function after MI.
基金financially supported by the Science and Technology Tackle Program of Henan Province, No.0424420054
文摘Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.
文摘hypoxicischemic brain injury;however,the therapeutic efficacy of bone marrow-derived mesenchymal stem cells largely depends on the number of cells that are successfully transferred to the target.Magnet-targeted drug delivery systems can use a specific magnetic field to attract the drug to the target site,increasing the drug concentration.In this study,we found that the double-labeling using superparamagnetic iron oxide nanoparticle and poly-L-lysine(SPIO-PLL)of bone marrow-derived mesenchymal stem cells had no effect on cell survival but decreased cell proliferation 48 hours after labeling.Rat models of hypoxic-ischemic brain injury were established by ligating the left common carotid artery.One day after modeling,intraventricular and caudal vein injections of 1×105 SPIO-PLL-labeled bone marrow-derived mesenchymal stem cells were performed.Twenty-four hours after the intraventricular injection,magnets were fixed to the left side of the rats’heads for 2 hours.Intravoxel incoherent motion magnetic resonance imaging revealed that the perfusion fraction and the diffusion coefficient of rat brain tissue were significantly increased in rats treated with SPIO-PLL-labeled cells through intraventricular injection combined with magnetic guidance,compared with those treated with SPIO-PLL-labeled cells through intraventricular or tail vein injections without magnetic guidance.Hematoxylin-eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling(TUNEL)staining revealed that in rats treated with SPIO-PLL-labeled cells through intraventricular injection under magnetic guidance,cerebral edema was alleviated,and apoptosis was decreased.These findings suggest that targeted magnetic guidance can be used to improve the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for hypoxic-ischemic brain injury.This study was approved by the Animal Care and Use Committee of The Second Hospital of Dalian Medical University,China(approval No.2016-060)on March 2,2016.
基金supported by the Science and Technology Development Foundation of Beijing Science and Technology Commission, No. Z101107052210004
文摘In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal a-synuclein accumulation in cells Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and dopamine secretion in a cell dose-dependent manner. MitoLight staining was used to confirm that PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells demonstrate reduced levels of cell apoptosis. Immunocytochemistry and western blot analysis found the quantity of α-synuclein accumulation was significantly reduced in PC12 cell and bone marrow-derived mesenchymal stem cell co-cultures. These results indicate that bone marrow-derived mesenchymal stem cells can attenuate 6-hydroxydopamine-induced cytotoxicity by reducing abnormal α-synuclein accumulation in PC12 cells.
文摘A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro.
基金a Grant from the Liaoning Provincial Education Department, No. 05L485
文摘The time point at which bone marrow-derived mesenchymal stem cells(BMSCs)can be used in transplantation for the treatment of ischemic brain injury remains unclear.In the present study,BMSCs were transplanted to the ischemic site 90 minutes post-ischemia.The results demonstrated that the transplanted BMSCs improved neurological function,reduced infarct volume,increased survivin expression,decreased caspase-3 expression and reduced apoptosis.This suggests that BMSCs transplanted at an ultra-early stage ameliorated brain ischemia by increasing survivin expression,decreasing caspase-3 expression and reducing apoptosis at the ischemia/reperfusion injury site.
文摘BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide.These defects generally result from severe trauma or resection of a whole large tumour.Autologous bone grafts are the current gold standard for the reconstruction of such defects.However,due to increased patient morbidity and the need for a second operative site,other lines of treatment should be introduced.To find alternative unconventional therapies to manage such defects,bone tissue engineering using a combination of suitable bioactive factors,cells,and biocompatible scaffolds offers a promising new approach for bone regeneration.AIM To evaluate the healing capacity of platelet-rich fibrin(PRF)membranes seeded with allogeneic mesenchymal bone marrow-derived stem cells(BMSCs)on critically sized mandibular defects in a rat model.METHODS Sixty-three Sprague Dawley rats were subjected to bilateral bone defects of critical size in the mandibles created by a 5-mm diameter trephine bur.Rats were allocated to three equal groups of 21 rats each.Group I bone defects were irrigated with normal saline and designed as negative controls.Defects of group II were grafted with PRF membranes and served as positive controls,while defects of group III were grafted with PRF membranes seeded with allogeneic BMSCs.Seven rats from each group were killed at 1,2 and 4 wk.The mandibles were dissected and prepared for routine haematoxylin and eosin(HE)staining,Masson's trichrome staining and CD68 immunohistochemical staining.RESULTS Four weeks postoperatively,the percentage area of newly formed bone was significantly higher in group III(0.88±0.02)than in groups I(0.02±0.00)and II(0.60±0.02).The amount of granulation tissue formation was lower in group III(0.12±0.02)than in groups I(0.20±0.02)and II(0.40±0.02).The number of inflammatory cells was lower in group III(0.29±0.03)than in groups I(4.82±0.08)and II(3.09±0.07).CONCLUSION Bone regenerative quality of critically sized mandibular bone defects in rats was better promoted by PRF membranes seeded with BMSCs than with PRF membranes alone.
基金the"135 Project"Medical Key Talent Foundation of Jiangsu Province
文摘BACKGROUND: Stereotactic injection (striatum or lateral ventricle) and vascular injection ( tail vein or carotid artery) are now often used in cellular therapy for cerebral infarction. Stereotactic injection can accurately deliver cells to the infarct area, but requires a stereotactic device and causes secondary trauma; vascular injection is easy and better for host neurological deficit recovery, but can cause thrombosis. OBJECTIVE: To compare the therapeutic potential of adult bone marrow-derived mesenchymal stem cells (BMSCs) transplantation by intraperitoneal versus intravenous administration to cerebral ischemic rats. DESIGN, TIME AND SE'B'ING: A randomized controlled animal experiment was performed at the Cell Room and Pathology Laboratory, Brain Hospital Affiliated to Nanjing Medical University from November 2007 to September 2008. MATERIALS: BMSCs were derived from 20 healthy Sprague-Dawley rats aged 4-6 weeks. METHODS: Forty-five adult middle cerebral artery occlusion (MCAO) rats were randomly divided into control, intravenous and intraperitoneal injection groups, with 15 rats in each group. At 21 days after modeling, rats in the control group received 1 mL of 0.01 mol/L phosphate buffered saline via tail vein injection and each experimental rat received 4 x 106 BMSCs labeled by bromodeoxyuridine (BrdU) via intravenous or intraperitoneal injection. MAIN OUTCOME MEASURES: Angiogenin expression and survival of transplanted cells were measured by immunohistochemical staining of brain tissue in infarction hemisphere at 7, 14 or 21 days after BMSC transplantation. Co-expression of BrdU/microtubule-associated protein 2 or BrdU/glial fibrillary acidic protein was observed by double-labeled immunofluorescence of cerebral cortex. Evaluation of nerve function adhesion-removal test was performed on the 14 or 21 days after BMSCs treatment. using the neurological injury severity score and the 1st and 21st day before and after MCAO, and at 3, 7 RESULTS: Angiogenin-positive new vessels were distributed in the bilateral striatum, hippocampus and cerebral cortex of each group of rats at each time point, most markedly in the intravenous injection group. There were significantly more BrdU-positive cells in the intravenous injection group than in the intraperitoneal injection group (P 〈 0.01). Co-expression of BrdU/ microtubule-associated protein 2 or BrdU/glial fibrillary acidic protein were almost only seen in the intravenous group by fluorescence microscopy. After transplantation, BMSCs significantly restored nerve function in rats, particularly in the intravenous injection group. CONCLUSION: BMSCs were able to enter brain tissue via the tail vein or peritoneal injection and improve neurological function by promoting the regeneration of nerves and blood vessels in vivo, more effectively after intravenous than intraperitoneal injection.
基金the National Natural Science Foundation of China, No. 30270491 the Natural Science Foundation of Guangdong Province, No. 04020422 Science and Technology Plan Program of Guangdong Province, No. 2003A3020304
文摘BACKGROUND: It has been proved by many experimental studies from the aspects of morphology and immunocytochemistry in recent years that bone marrow stromal cells (BMSCs) can in vitro induce and differentiate into the cells possessing the properties of nerve cells. But the functions of BMSCs-derived neural stem cells(NSCs) and the differentiated neuron-like cells are still unclear. OBJECTIVE: To observe whether bone marrow-derived NSCs can secrete norepinephrine (NE) under the condition of in vitro culture, induce and differentiation, and analyze the biochemical properties of BMSCs-derived NSCs. DESIGN: A non-randomized and controlled experimental observation SETTING : Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University MATERIALS: This experiment was carried out in the Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University. The bone marrow used in the experiment was collected from 1.5- month-old healthy New Zealand white rabbits. METHODS: This experiment was carried out in the Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University. The bone marrow used in the experiment was collected from 1.5 month-old healthy New Zealand white rabbits. BMSCs of rabbits were isolated and performed in vitro culture, induce and differentiation with culture medium of NSCs and differentiation-inducing factor, then identified with immunocytochemical method. Experimental grouping: ①Negative control group: L-02 hepatic cell and RPMI1640 culture medium were used. ② Background culture group: Only culture medium of NSCs as culture solution was added into BMSCs to perform culture, and 0.1 volume fraction of imported fetal bovine serum was supplemented 72 hours later. ③Differentiation inducing factor group: After culture for 72 hours, retinoic acid and glial cell line-derived neurotrophic factors were added in the culture medium of BMSCs and NSCs as corresponding inducing factors. The level of NE in each group was detected on the day of culture and 5, 7, 14 and 20 days after culture with high performance liquid chromatography (HPLC). The procedure was conducted 3 times in each group.Standard working curve was made according to the corresponding relationship of NE concentration and peak area. The concentration of NE every 1×10^7 cells was calculated according to standard curve and cell counting. MAIN OUTCOME MEASURES : The level of NE of cultured cells was detected with HPLC; immunocytochemistrical identification of Nestin and neuron specific nuclear protein was performed. RESULTS: ① On the 14^th day after cell culture, BMSCs turned into magnus and round cells which presented Nestin-positive antigen, then changed into neuron-like cells with long processus and presented neuron specific nuclear protein -positive antigen at the 20^th day following culture. ② The ratio of NE concentration and peak area has good linear relationship, and regression equation was Y=1.168 36+0.000 272 8X,r=-0.998 4. Coefficient variation (CV) was 〈 5% and the recovery rate was 92.39%( Y referred to concentration and X was peak area).③NE was well detached within 10 minutes under the condition of this experiment. ④ NE was detected in NSCs and their culture mediums, which were cultured for 7, 14 and 20 days respectively, but no NE in BMSCs, NSCs-free culture medium and L-02 hepatic cell which were as negative control under the HPLC examination. Analysis of variance showed that the level of NE gradually increased following the elongation of culture time (P 〈 0.01 ). No significant difference in the level of NE existed at the same time between differentiation inducing factor group and basic culture group(P 〉 0.05). CONCLUSION : BMSCs of rabbits can proliferate in vitro and express Nestin antigen; They can differentiate into neuron-like cells, express specific neucleoprotein of mature neurons, synthesize and secrete NE as a kind of neurotransmitter.
文摘BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson’s disease have solely focused on in vivo animal models. Because of the number of influencing factors, it has been difficult to determine a consistent outcome. OBJECTIVE: To establish an injury model in brain slices of substantia nigra and striatum using 1-methyl-4-phenylpytidinium ion (MPP+), and to investigate the effect of MSCs on dopaminergic neurons following MPP+ induced damage. DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, animal experiment using I mmunohistochemistry was performed at the Laboratory of the Department of Anatomy, Fudan University between January 2004 and December 2006. MATERIALS: Primary MSC cultures were obtained from femurs and tibias of adult Sprague Dawley rats. Organotypic brain slices were isolated from substantia nigra and striatum of 1-day-old Sprague Dawley rat pups. Monoclonal antibodies for tyrosine hydroxylase (TH, 1:5 000) were from Santa Cruz (USA); goat anti-rabbit IgG antibodies labeled with FITC were from Boster Company (China). METHODS: Organotypic brain slices were cultured for 5 days in whole culture medium supplemented with 50% DMEM, 25% equine serum, and 25% Tyrode’s balanced salt solution. The medium was supplemented with 5 μg/mL Ara-C, and the culture was continued for an additional 5 days. The undergrowth of brain slices was discarded at day 10. Eugonic brain slices were cultured with basal media for an additional 7 days. The brain slices were divided into three groups: control, MPP+ exposure, and co-culture. For the MPP+ group, MPP+ (30 μmol/L) was added to the media at day 17 and brain slices were cultured for 4 days, followed by control media. For the co-culture group, the MPP+ injured brain slices were placed over MSCs in the well and were further cultured for 7 days. MAIN OUTCOME MEASURES: After 28 days in culture, neurite outgrowth was examined in the brain slices under phase-contrast microscopy. The percent of area containing dead cells in each brain slice was calculated with the help of propidium iodide fluorescence. Brain slices were stained with antibodies for TH to indicate the presence of dopaminergic neurons. Transmission electron microscopy was applied to determine the effect of MSCs on neuronal ultrastructure. RESULTS: Massive cell death and neurite breakage was observed in the MPP+ group. In addition, TH expression was significantly reduced, compared to the control group (P 〈 0.01). After 7 days in culture with MSCs, the co-culture group presented with less cell damage and reduced neurite breakage, and TH expression was increased. However, these changes were not significantly different from the MPP+ group (P 〈 0.01). Electron microscopy revealed reduced ultrastructural injury to cells in the brain slices. However, vacuoles were present in cells, with some autophagic vacuoles. CONCLUSION: Bone marrow-derived MSCs can promote survival of dopaminergic neurons following MPP+-induced neurotoxicity in co-cultures with substantia nigra and striatum brain slices.
文摘BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated protein 43 (GAP-43) and neural cell adhesion molecule following BMSC transplantation to the lateral ventricle in rats with acute focal cerebral ischemic brain damage. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment using immunohistochemistry was performed at the laboratories of Department of Neurology, Renmin Hospital of Wuhan University and Doctoral Scientific Research Work Station of C-BONS PHARMA, Hubei Province, China, from January 2007 to December 2008. MATERIALS: Monoclonal mouse anti-rat 5-bromo-2-deoxyuridine and neural cell adhesion molecule antibodies were purchased from Sigma, USA; monoclonal mouse anti-rat GAP-43 antibody was purchased from Wuhan Boster, China. METHODS: Rat models of right middle cerebral artery occlusion were established using the thread method. At 1 day after middle cerebral artery occlusion, 20μL culture solution, containing 5×10^5 BMSCs, was transplanted to the left lateral ventricle using micro-injection. MAIN OUTCOME MEASURES: Scores of neurological impairment were measured to assess neural function. Expression of GAP-43 and neural cell adhesion molecule at the lesion areas was examined by immunohistochemistry. RESULTS: GAP-43 and neural cell adhesion molecule expression was low in brain tissues of the sham-operated group, but expression increased at the ischemic boundary (P 〈 0.05). Transplantation of BMSCs further enhanced expression of GAP-43 and neural cell adhesion molecule (P 〈 0.05) and remarkably improved neurological impairment of ischemic rats (P 〈 0.05). CONCLUSION: BMSC transplantation promoted neurological recovery in rats by upregulating expression of GAP-43 and neural cell adhesion molecule.
文摘Stem cell therapy (SCT) is a promising and prospective approach in the treatment of patients with severe peripheral arterial disorders, primarily with Buerger’s disease. However, very little is known about the duration of the effect of SCT, and to our best knowledge no data are available on the efficacy and safety of repeated SCT in patients with Buerger’s disease. Here we report on two patients with severe Buerger’s disease, who received repeated autologous bone marrow-derived stem cell therapy. Our results show that a second SCT, applied to a previously treated leg 30 or 36 months after the first treatment was efficient in both cases. After twelve months, the clinical state of the repeatedly treated lower limb improved spectacularly and non-healing ulcers healed more rapidly than after the first SCT. No severe adverse events were detected. Thus repeated SCT offers a safe and efficient treatment option for relapsing patients at the advanced stage of Buerger’s disease.