The objective of this study was to investigate the effects of mineralized bone nodules, formed in vitro by bone marrow stromal cells (BMSCs), on the new bone formation in bone defect and on implant surface. The mine...The objective of this study was to investigate the effects of mineralized bone nodules, formed in vitro by bone marrow stromal cells (BMSCs), on the new bone formation in bone defect and on implant surface. The mineralized bone nodules were generated by culture of Lewis rats BMSCs on titanium disks in osteogenic induction medium. The gap-healing animal model was used to create the bone defect facing the disk. The titanium disks in the presence orB group or in the absence of NB group bone nodules were randomly placed into one of the rat distal femurs. This self-control design was used to compare the bone formation in defects and on titanium surface, by Micro-CT, fluorescence staining, histological and histomorphometric analysis. The new bone formation parameters in bone defect area of B group were significantly higher than those of NB group at 2 weeks, including bone volume fraction, trabecular thickness and bone area ratio. The bone nodules pre-stained with Alizarin red disappeared mostly at 2 weeks, while the red fluorescence reappeared in the newly formed bone away from the disk surface. For the bone-implant contact, B group showed lower values than NB group at 2 weeks, but no significant difference was found at 4 weeks. Our results indicate that the mineralized bone nodules can be resorbed in vivo and promote the early osteogenesis in the bone defects, and bone nodules may be applicable for new bone generation in bone defect or modification of tissue engineering scaffold.展开更多
The regulation of cellular differentiation by progesterone in fetal rat calvarial osteoblasts was investigated. Our results showed that cells cultured in the presence of progesterone had a 7% increase in the alkaline ...The regulation of cellular differentiation by progesterone in fetal rat calvarial osteoblasts was investigated. Our results showed that cells cultured in the presence of progesterone had a 7% increase in the alkaline phosphatase activity when compared to untreated cells. The concentration of osteocalcin in the conditioned medium from progesterone treated osteoblasts was 28% higher than that of untreated controls. In addition,administration of progesterone significantly enhanced the number and area of bone nodules. In conclusion, progesterone stimulates the differentiation of fetal rat calvarial osteoblastic cells in vitro展开更多
基金Funded by the National Natural Science Foundation of China(Nos.81200812 and 81371170)Project of Young Scientist by Hubei Bureau of Public Health(No.QJX2012-15)Doctoral Fund of Ministry of Education of China(No.20110141120056)
文摘The objective of this study was to investigate the effects of mineralized bone nodules, formed in vitro by bone marrow stromal cells (BMSCs), on the new bone formation in bone defect and on implant surface. The mineralized bone nodules were generated by culture of Lewis rats BMSCs on titanium disks in osteogenic induction medium. The gap-healing animal model was used to create the bone defect facing the disk. The titanium disks in the presence orB group or in the absence of NB group bone nodules were randomly placed into one of the rat distal femurs. This self-control design was used to compare the bone formation in defects and on titanium surface, by Micro-CT, fluorescence staining, histological and histomorphometric analysis. The new bone formation parameters in bone defect area of B group were significantly higher than those of NB group at 2 weeks, including bone volume fraction, trabecular thickness and bone area ratio. The bone nodules pre-stained with Alizarin red disappeared mostly at 2 weeks, while the red fluorescence reappeared in the newly formed bone away from the disk surface. For the bone-implant contact, B group showed lower values than NB group at 2 weeks, but no significant difference was found at 4 weeks. Our results indicate that the mineralized bone nodules can be resorbed in vivo and promote the early osteogenesis in the bone defects, and bone nodules may be applicable for new bone generation in bone defect or modification of tissue engineering scaffold.
文摘The regulation of cellular differentiation by progesterone in fetal rat calvarial osteoblasts was investigated. Our results showed that cells cultured in the presence of progesterone had a 7% increase in the alkaline phosphatase activity when compared to untreated cells. The concentration of osteocalcin in the conditioned medium from progesterone treated osteoblasts was 28% higher than that of untreated controls. In addition,administration of progesterone significantly enhanced the number and area of bone nodules. In conclusion, progesterone stimulates the differentiation of fetal rat calvarial osteoblastic cells in vitro