In view of the environment competencies,selecting the optimal green supplier is one of the crucial issues for enterprises,and multi-criteria decision-making(MCDM)methodologies can more easily solve this green supplier...In view of the environment competencies,selecting the optimal green supplier is one of the crucial issues for enterprises,and multi-criteria decision-making(MCDM)methodologies can more easily solve this green supplier selection(GSS)problem.In addition,prioritized aggregation(PA)operator can focus on the prioritization relationship over the criteria,Choquet integral(CI)operator can fully take account of the importance of criteria and the interactions among them,and Bonferroni mean(BM)operator can capture the interrelationships of criteria.However,most existing researches cannot simultaneously consider the interactions,interrelationships and prioritizations over the criteria,which are involved in the GSS process.Moreover,the interval type-2 fuzzy set(IT2FS)is a more effective tool to represent the fuzziness.Therefore,based on the advantages of PA,CI,BM and IT2FS,in this paper,the interval type-2 fuzzy prioritized Choquet normalized weighted BM operators with fuzzy measure and generalized prioritized measure are proposed,and some properties are discussed.Then,a novel MCDM approach for GSS based upon the presented operators is developed,and detailed decision steps are given.Finally,the applicability and practicability of the proposed methodology are demonstrated by its application in the shared-bike GSS and by comparisons with other methods.The advantages of the proposed method are that it can consider interactions,interrelationships and prioritizations over the criteria simultaneously.展开更多
Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neith...Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neither true nor false is useful in the resolution of real-life problems.However,simultaneous variations render neutrosophic sets unsuitable in specific circumstances.To enable the management of these sorts of issues,we combine the principle of multi-valued neutrosophic uncertain linguistic sets and complex fuzzy sets to develop the principle of multivalued complex neutrosophic uncertain linguistic sets.Multi-valued complex neutrosophic uncertain linguistic sets can contain grades of truth,abstinence,and falsity,and uncertain linguistic terms,which are expressed as complex numbers whose real and imaginary parts are limited to the unit interval.Some important Dombi laws are elaborated along with Bonferroni mean operators,which offer a flexible general structure with modifiable factors.Bonferroni means aggregation operators perform a significant role in conveying the magnitude level of options and characteristics.To determine relationships among any number of attributes,we develop multi-valued complex neutrosophic uncertain linguistic Dombi-normalized weighted Bonferroni mean operators and discuss their important properties with some special cases.By using these laws,we can deploy themulti-attribute decisionmaking(MADM)technique using the novel principle of multi-valued complex neutrosophic uncertain linguistic sets.To determine the power and flexibility of the elaborated approach,we resolve some numerical examples based on the proposed operator.Finally,the work is validated with the help of comparative analysis,a discussion of its advantages,and geometric expressions of the elaborated theories.展开更多
In this paper,we focus on a critical problem in data envelopment analysis(DEA)and propose a simple resolution for it.The major problem of the DEA is the existence of several efficient decision-making units(DMUs).To de...In this paper,we focus on a critical problem in data envelopment analysis(DEA)and propose a simple resolution for it.The major problem of the DEA is the existence of several efficient decision-making units(DMUs).To deal with this issue,we introduce a method that involves cross-efficiency evaluation,Gini coefficient,and Bonferroni mean.First,a cross-efficiency matrix is developed.Then,mixing the Gini coefficient and Bonferroni mean,a Gini–Bonferroni(GB)index is proposed for ranking efficient DMUs,where the DMUs with bigger GB are ranked higher.The proposed method broke the tie between efficient DMUs.Finally,a numerical example and real application of this method are presented in the ranking of research and development(R&D)investment companies in the pharmaceutical and biotechnology industries.展开更多
基金supported by the National Natural Science Foundation of China(71771140)Project of Cultural Masters and“the Four Kinds of a Batch”Talents,the Special Funds of Taishan Scholars Project of Shandong Province(ts201511045)the Major Bidding Projects of National Social Science Fund of China(19ZDA080)。
文摘In view of the environment competencies,selecting the optimal green supplier is one of the crucial issues for enterprises,and multi-criteria decision-making(MCDM)methodologies can more easily solve this green supplier selection(GSS)problem.In addition,prioritized aggregation(PA)operator can focus on the prioritization relationship over the criteria,Choquet integral(CI)operator can fully take account of the importance of criteria and the interactions among them,and Bonferroni mean(BM)operator can capture the interrelationships of criteria.However,most existing researches cannot simultaneously consider the interactions,interrelationships and prioritizations over the criteria,which are involved in the GSS process.Moreover,the interval type-2 fuzzy set(IT2FS)is a more effective tool to represent the fuzziness.Therefore,based on the advantages of PA,CI,BM and IT2FS,in this paper,the interval type-2 fuzzy prioritized Choquet normalized weighted BM operators with fuzzy measure and generalized prioritized measure are proposed,and some properties are discussed.Then,a novel MCDM approach for GSS based upon the presented operators is developed,and detailed decision steps are given.Finally,the applicability and practicability of the proposed methodology are demonstrated by its application in the shared-bike GSS and by comparisons with other methods.The advantages of the proposed method are that it can consider interactions,interrelationships and prioritizations over the criteria simultaneously.
文摘Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neither true nor false is useful in the resolution of real-life problems.However,simultaneous variations render neutrosophic sets unsuitable in specific circumstances.To enable the management of these sorts of issues,we combine the principle of multi-valued neutrosophic uncertain linguistic sets and complex fuzzy sets to develop the principle of multivalued complex neutrosophic uncertain linguistic sets.Multi-valued complex neutrosophic uncertain linguistic sets can contain grades of truth,abstinence,and falsity,and uncertain linguistic terms,which are expressed as complex numbers whose real and imaginary parts are limited to the unit interval.Some important Dombi laws are elaborated along with Bonferroni mean operators,which offer a flexible general structure with modifiable factors.Bonferroni means aggregation operators perform a significant role in conveying the magnitude level of options and characteristics.To determine relationships among any number of attributes,we develop multi-valued complex neutrosophic uncertain linguistic Dombi-normalized weighted Bonferroni mean operators and discuss their important properties with some special cases.By using these laws,we can deploy themulti-attribute decisionmaking(MADM)technique using the novel principle of multi-valued complex neutrosophic uncertain linguistic sets.To determine the power and flexibility of the elaborated approach,we resolve some numerical examples based on the proposed operator.Finally,the work is validated with the help of comparative analysis,a discussion of its advantages,and geometric expressions of the elaborated theories.
基金supported in part by the National Natural Science Foundation of China (No.71071161)the National Science Fund for Distinguished Young Scholars of China (No.70625005)
文摘In this paper,we focus on a critical problem in data envelopment analysis(DEA)and propose a simple resolution for it.The major problem of the DEA is the existence of several efficient decision-making units(DMUs).To deal with this issue,we introduce a method that involves cross-efficiency evaluation,Gini coefficient,and Bonferroni mean.First,a cross-efficiency matrix is developed.Then,mixing the Gini coefficient and Bonferroni mean,a Gini–Bonferroni(GB)index is proposed for ranking efficient DMUs,where the DMUs with bigger GB are ranked higher.The proposed method broke the tie between efficient DMUs.Finally,a numerical example and real application of this method are presented in the ranking of research and development(R&D)investment companies in the pharmaceutical and biotechnology industries.