The paper presents detailed comparisons between CRM (critical conduction mode) and CCM (continuous conduction mode) control schemes used for Boost PFC converter. The two schemes are analyzed and compared under the chi...The paper presents detailed comparisons between CRM (critical conduction mode) and CCM (continuous conduction mode) control schemes used for Boost PFC converter. The two schemes are analyzed and compared under the chips of L6561 and UC 3854 which are commonly used for CRM and CCM respectively. Both schemes are based on multiplier;however, the CCM is more complex and needs more periphery components which increase the cost. The Boost PFC under CRM is easier to be implemented. Nevertheless, the variable switch frequency makes the system (including the power-stage inductor and capacitor) hard to design. It seems that the CRM PFC is more attractive in low power applications which only need to meet IEC61000-3-2 D standard. Some experiment results are also presented for the comparison.展开更多
文摘The paper presents detailed comparisons between CRM (critical conduction mode) and CCM (continuous conduction mode) control schemes used for Boost PFC converter. The two schemes are analyzed and compared under the chips of L6561 and UC 3854 which are commonly used for CRM and CCM respectively. Both schemes are based on multiplier;however, the CCM is more complex and needs more periphery components which increase the cost. The Boost PFC under CRM is easier to be implemented. Nevertheless, the variable switch frequency makes the system (including the power-stage inductor and capacitor) hard to design. It seems that the CRM PFC is more attractive in low power applications which only need to meet IEC61000-3-2 D standard. Some experiment results are also presented for the comparison.