Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai...Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.展开更多
The feature-selection problem in training AdaBoost classifiers is addressed in this paper. A working feature subset is generated by adopting a novel feature subset selection method based on the partial least square (...The feature-selection problem in training AdaBoost classifiers is addressed in this paper. A working feature subset is generated by adopting a novel feature subset selection method based on the partial least square (PLS) regression, and then trained and selected from this feature subset in Boosting. The experiments show that the proposed PLS-based feature-selection method outperforms the current feature ranking method and the random sampling method.展开更多
The fast spread of coronavirus disease(COVID-19)caused by SARSCoV-2 has become a pandemic and a serious threat to the world.As of May 30,2020,this disease had infected more than 6 million people globally,with hundreds...The fast spread of coronavirus disease(COVID-19)caused by SARSCoV-2 has become a pandemic and a serious threat to the world.As of May 30,2020,this disease had infected more than 6 million people globally,with hundreds of thousands of deaths.Therefore,there is an urgent need to predict confirmed cases so as to analyze the impact of COVID-19 and practice readiness in healthcare systems.This study uses gradient boosting regression(GBR)to build a trained model to predict the daily total confirmed cases of COVID-19.The GBR method can minimize the loss function of the training process and create a single strong learner from weak learners.Experiments are conducted on a dataset of daily confirmed COVID-19 cases from January 22,2020,to May 30,2020.The results are evaluated on a set of evaluation performance measures using 10-fold cross-validation to demonstrate the effectiveness of the GBR method.The results reveal that the GBR model achieves 0.00686 root mean square error,the lowest among several comparative models.展开更多
Fraud detection for credit/debit card,loan defaulters and similar types is achievable with the assistance of Machine Learning(ML)algorithms as they are well capable of learning from previous fraud trends or historical...Fraud detection for credit/debit card,loan defaulters and similar types is achievable with the assistance of Machine Learning(ML)algorithms as they are well capable of learning from previous fraud trends or historical data and spot them in current or future transactions.Fraudulent cases are scant in the comparison of non-fraudulent observations,almost in all the datasets.In such cases detecting fraudulent transaction are quite difficult.The most effective way to prevent loan default is to identify non-performing loans as soon as possible.Machine learning algorithms are coming into sight as adept at handling such data with enough computing influence.In this paper,the rendering of different machine learning algorithms such as Decision Tree,Random Forest,linear regression,and Gradient Boosting method are compared for detection and prediction of fraud cases using loan fraudulent manifestations.Further model accuracy metric have been performed with confusion matrix and calculation of accuracy,precision,recall and F-1 score along with Receiver Operating Characteristic(ROC)curves.展开更多
The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the...The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the ground support system capacity, the excavation span, the geological structure and the peak particle velocity of rockburst sites were analyzed. The performance of the model was evaluated using a 10 folds cross-validation (CV) procedure with 80%of original data during modeling, and an external testing set (20%) was employed to validate the prediction performance of the SGB model. Two accuracy measures for multi-class problems were employed: classification accuracy rate and Cohen’s Kappa. The accuracy analysis together with Kappa for the rockburst damage dataset reveals that the SGB model for the prediction of rockburst damage is acceptable.展开更多
提出一种新颖的基于boosting RBF神经网络的入侵检测方法。将模糊聚类和神经网络技术相结合,提出基于改进的FCM算法和OLS算法相结合的FORBF算法,为了提高RBF神经网络的泛化能力,采用Boosting方法,进行网络集成。以"KDD Cup 1999 Da...提出一种新颖的基于boosting RBF神经网络的入侵检测方法。将模糊聚类和神经网络技术相结合,提出基于改进的FCM算法和OLS算法相结合的FORBF算法,为了提高RBF神经网络的泛化能力,采用Boosting方法,进行网络集成。以"KDD Cup 1999 Data"网络连接数据集训练神经网络并仿真实验,得到了较高的检测率和较低的误警率。展开更多
基金Project(2017G006-N)supported by the Project of Science and Technology Research and Development Program of China Railway Corporation。
文摘Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.
基金Supported by the National Natural Science Foundation of China(60772066)
文摘The feature-selection problem in training AdaBoost classifiers is addressed in this paper. A working feature subset is generated by adopting a novel feature subset selection method based on the partial least square (PLS) regression, and then trained and selected from this feature subset in Boosting. The experiments show that the proposed PLS-based feature-selection method outperforms the current feature ranking method and the random sampling method.
基金The financial support provided from the Deanship of Scientific Research at King SaudUniversity,Research group No.RG-1441-502.
文摘The fast spread of coronavirus disease(COVID-19)caused by SARSCoV-2 has become a pandemic and a serious threat to the world.As of May 30,2020,this disease had infected more than 6 million people globally,with hundreds of thousands of deaths.Therefore,there is an urgent need to predict confirmed cases so as to analyze the impact of COVID-19 and practice readiness in healthcare systems.This study uses gradient boosting regression(GBR)to build a trained model to predict the daily total confirmed cases of COVID-19.The GBR method can minimize the loss function of the training process and create a single strong learner from weak learners.Experiments are conducted on a dataset of daily confirmed COVID-19 cases from January 22,2020,to May 30,2020.The results are evaluated on a set of evaluation performance measures using 10-fold cross-validation to demonstrate the effectiveness of the GBR method.The results reveal that the GBR model achieves 0.00686 root mean square error,the lowest among several comparative models.
文摘Fraud detection for credit/debit card,loan defaulters and similar types is achievable with the assistance of Machine Learning(ML)algorithms as they are well capable of learning from previous fraud trends or historical data and spot them in current or future transactions.Fraudulent cases are scant in the comparison of non-fraudulent observations,almost in all the datasets.In such cases detecting fraudulent transaction are quite difficult.The most effective way to prevent loan default is to identify non-performing loans as soon as possible.Machine learning algorithms are coming into sight as adept at handling such data with enough computing influence.In this paper,the rendering of different machine learning algorithms such as Decision Tree,Random Forest,linear regression,and Gradient Boosting method are compared for detection and prediction of fraud cases using loan fraudulent manifestations.Further model accuracy metric have been performed with confusion matrix and calculation of accuracy,precision,recall and F-1 score along with Receiver Operating Characteristic(ROC)curves.
基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University of ChinaProject supported by the Sheng Hua Lie Ying Program of Central South University,China
文摘The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the ground support system capacity, the excavation span, the geological structure and the peak particle velocity of rockburst sites were analyzed. The performance of the model was evaluated using a 10 folds cross-validation (CV) procedure with 80%of original data during modeling, and an external testing set (20%) was employed to validate the prediction performance of the SGB model. Two accuracy measures for multi-class problems were employed: classification accuracy rate and Cohen’s Kappa. The accuracy analysis together with Kappa for the rockburst damage dataset reveals that the SGB model for the prediction of rockburst damage is acceptable.
基金河北省自然科学基金(the Natural Science Foundation of Hebei Province of China under Grant No.F2007000682)
文摘提出一种新颖的基于boosting RBF神经网络的入侵检测方法。将模糊聚类和神经网络技术相结合,提出基于改进的FCM算法和OLS算法相结合的FORBF算法,为了提高RBF神经网络的泛化能力,采用Boosting方法,进行网络集成。以"KDD Cup 1999 Data"网络连接数据集训练神经网络并仿真实验,得到了较高的检测率和较低的误警率。