The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor duc...The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor ducted fan helicopter is developed and implemented on the basis of the wind tunnel experiment.After that,the helicopter′s stability and coupling characteristics of manipulation are analyzed through time-domain.Finally,a sliding mode controller(SMC)with boundary layers is developed on a hardware in the loop platform using digital signal processor(DSP)as the flight control computer.The results show that the RDFH′s tracking ability performs well under the use of proposed controller.展开更多
Recirculation is prohibited in many coal mining countries because of the fear that the re-use of return air would allow the build-up of air contaminants at the workings. The incorrect design and location of a booster ...Recirculation is prohibited in many coal mining countries because of the fear that the re-use of return air would allow the build-up of air contaminants at the workings. The incorrect design and location of a booster fan in any ventilation network can create unsafe condition due to recirculation. The current approach to investigating recirculation using simulation software requires manual effort which becomes tedious in a complex and a large network. An algorithm-based C++ program was designed to detect the recirculation in a booster fan ventilation networks. This program needed an input file prepared from output file generated by any ventilation simulator. This program created an output file for recirculation. This program demonstrated the strong capability to detect the recirculation in a sample network and a coal mine ventilation network. The outcomes of this program were documented in this paper.展开更多
The high flow-rate centrifugal fan needs a three-dimensional impeller to achieve a high efficiency. In this paper, the design procedure of a high-efficiency three-dimensional centrifugal fan is presented. First, the m...The high flow-rate centrifugal fan needs a three-dimensional impeller to achieve a high efficiency. In this paper, the design procedure of a high-efficiency three-dimensional centrifugal fan is presented. First, the main dimensions of the fan were calculated by using the conventional one-dimensional method. Then, the blade loading or the angular momentum distribution along the meridional streamline on the blade surfaces is prescribed. After that, the three-dimensional blade is determined by using the streamline curvature method. With the aid of numerical simulations, the performance of the three-dimensional fan was improved and some of the key influence factors were investigated. The analyses indicate that, as to the high flow-rate centrifugal fan, the Stanitz modified formula is recommended to calculate the separation radius, rb. A proper increase in the separation radius is beneficial for the fan’s performance. It is also indicated that a decrease in the angular momentum on the hub leads to an increase in total pressure efficiency, under the condition of a given constant mean angular momentum at the outlet of the blade. In addition, the installation of a fairing on the hub plate can improve the fan’s efficiency evidently when the streamline curvature method is adopted to design the three-dimensional impeller.展开更多
To understand the evolution of the Miocene gravity flow deposits in the Lower Congo-Congo Fan Basin,this paper documents the Miocene sequence stratigraphic framework,the depositional characteristics and the controllin...To understand the evolution of the Miocene gravity flow deposits in the Lower Congo-Congo Fan Basin,this paper documents the Miocene sequence stratigraphic framework,the depositional characteristics and the controlling factors of the gravity flow system.Based on the establishment of high-resolution sequence stratigraphic framework,lithofacies characteristics and sedimentary units of the gravity flow deposits in the region are identified by using seismic,well logging and core data comprehensively,and the sedimentary evolution process is revealed and the controlling factors are discussed.The Miocene can be divided into four 3 rd-order sequences(SQ1-SQ4).The gravity flow deposits mainly include siliciclastic rock and pelite.The main sedimentary units include slumping deposits,mass transport deposits(MTD),channel fills,levee-overbank deposits,and frontal lobes.In the Early Miocene(SQ1),mainly gull-wing,weakly restricted to unrestricted depositional channel-overbank complexes and lobes were formed.In the early Middle Miocene(SQ2),W-shaped and weakly restricted erosional-depositional channels(multi-phase superposition)were subsequently developed.In the late Middle Miocene(SQ3),primarily U-shaped and restricted erosional channels were developed.In the Late Miocene(SQ4),largely V-shaped and deeply erosional isolated channels were formed in the study area.Climate cooling and continuous fall of the sea level made the study area change from toe of slope-submarine plain to lower continental slope,middle continental slope and finally to upper continental slope,which in turn affected the strength of the gravity flow.The three times of tectonic uplifting and climate cooling in the West African coast provided abundant sediment supply for the development of gravity flow deposits.Multistage activities of salt structures played important roles in redirecting,restricting,blocking and destroying the gravity flow deposits.Clarifying the characteristics,evolution and controlling factors of the Miocene gravity flow deposits in the Lower Congo-Congo Fan Basin can provide reference for deep-water petroleum exploration in this basin.展开更多
A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in severa...A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in several major coal mining countries including the United Kingdom,Australia,Poland and China.In the United States booster fans are prohibited in coal mines although they are used in several metal and non-metal mines.A study has been undertaken to examine alternatives for ventilating an underground room and pillar coal mine system.A feasibility study of a hypothetical situation has shown that current ventilation facilities are incapable of fulfilling mine air requirements in the future due to increased seam methane levels.A current ventilation network model has been prepared and projected to a mine five years plan."Ventsim visual" software simulations of different possible ventilation options have been conducted in which varying methane levels are found at working faces.The software can also undertake financial simulations and project present value total costs for the options under study.Several scenarios for improving the ventilation situation such as improving main surface fans,adding intake shafts,adding exhaust shafts and utilizing booster fans have been examined.After taking into account the total capital and operating costs for the five years mine plan the booster fan scenarios are recommended as being the best alternatives for further serious consideration by the mine.The optimum option is a properly sized and installed booster fan system that can be used to create safe work conditions,maintain adequate air quantity with lowest cost,generate a reduction in energy consumption and decrease mine system air leakage.展开更多
A novel coaxial ducted fan structure aircraft is proposed to enable the aircraft near vertical walls at high altitudes.The state space equation of the system can be obtained by correlation deduction and identification...A novel coaxial ducted fan structure aircraft is proposed to enable the aircraft near vertical walls at high altitudes.The state space equation of the system can be obtained by correlation deduction and identification of the whole prototype model.Based on the duct test bench experiment and computational fluid dynamics(CFD)simulation analysis,the expressions between the different distances dWE from the rotor center of the prototype to the wall and the thrust,reaction torque,and tilting moment of the system under hovering conditions are obtained.The influence of the wall effect of the prototype is incorporated into the system model to analyze the relationship between distance dWE and the comprehensive controllability of the system.The results show that the system comprehensive controllability vector of other channels changes little with the decrease of the distance dWE,and only the controllability vector of the rolling channel increases significantly.At the same time,the tilting moment also increases significantly,which strengthens the tendency of the prototype to tilt towards the wall.展开更多
The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key...The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key technologies for ensuring the success of rocket flights and has been a core topic in carrier rocket technology research. The Gravity-1 solid carrier rocket is the first solid rocket bundled rocket developed by China, adopting a configuration with four boosters and a core stage bundled together. During the actual flight process, the four booster engines are ignited first, and then, in the event of insufficient control force from the boosters, the core stage engine is ignited to participate in control. To address thrust asynchrony during the descent of the four boosters, an Extended State Observer(ESO) is employed in the control scheme for this flight segment. This involves real-time estimation and compensation of attitude parameters during flight, identification of thrust asynchrony among the boosters, and simultaneous determination of whether the core stage engine is ignited to participate in control.Through six degrees of freedom simulation analysis and Y1 flight test validation, this method has been proven to be correct and feasible.展开更多
As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study ai...As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.展开更多
Based on a large amount of seismic, drilling and core data, the characteristics of the early- middle Miocene submarine fans in the Baiyun Sag, northern South China Sea are investigated. By analyzing the sedimentary pr...Based on a large amount of seismic, drilling and core data, the characteristics of the early- middle Miocene submarine fans in the Baiyun Sag, northern South China Sea are investigated. By analyzing the sedimentary processes of submarine fans in SQ21 (SQ21 refers to the 3rd-order sequence with its bottom boundary 21 Ma), a sedimentary model of the sand-rich fans is established and the main factors controlling fan deposition are detailed. The results indicate that from early to middle Miocene the Pearl River Mouth Basin developed seven 3rd-order sequences in all, with each lowstand systems tract (LST) of the sequence corresponding to submarine fans. However, only the fans in SQ13.8 and SQ21 are sand-rich fans, the others being mud-rich fans. The cores reveal that the submarine fans in the Pearl River Mouth Basin developed five lithofacies: (1) mud clast-bearing sandstone, interpreted as channel deposits; (2) typical turbidite sandstones, also interpreted as channel deposits; (3) thin-bedded sandstone and mudstone, interpreted as channel-levee complex deposits; (4) massive sandstones, interpreted as lobe deposits; (5) massive mudstone, interpreted as hemipelagic mud. The sand-rich submarine fans in the Pearl River Mouth Basin mainly developed in LST, and in LST reverse faults were active, which led to the formation of accommodation on the shelf. Different from the theory of classic sequence stratigraphy, the accommodation on the shelf captures terrigenous debris transported by the Pearl River, and the uplift at the edge of shelf serves as a "Linear Source" for the deep water area instead of the Pearl River. Therefore, the fans mainly derived from the eroded debris from the uplift. Factors controlling fan deposition include the basin's tectonic framework, the evolution of the slope break, relative sea-level changes as well as the evolution of the fault system, and the fans are formed under the combination of the above factors.展开更多
Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Theref...Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Therefore this paper introduces the new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device, projects a design of such control system based on PLC, and determines the principle of the control system, the execution software and the design flow. Site commissioning effect on Daqing Oilfield shows this fan-shaped adaptive balancing intelligent device can effectively adjust and monitor the pumping unit in real time, the balance even adjusts from 0.787 to 0.901, and integrated energy saving rate is 14.2%. It is approved that this control device is professionally designed, with strong compatibility, and high reliability.展开更多
The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these ...The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these images are in the public domain, there has not been any systematic compilation of configurations of density plumes associated with various sedimentary environments and processes. This article, based on 45 case studies covering 21 major rivers(e.g., Amazon, Betsiboka, Congo [Zaire], Copper, Hugli [Ganges], Mackenzie, Mississippi, Niger, Nile, Rhone, Rio de la Plata, Yellow, Yangtze, Zambezi, etc.) and six different depositional environments(i.e., marine, lacustrine, estuarine, lagoon, bay, and reef), is the first attempt in illustrating natural variability of configurations of density plumes in modern environments. There are, at least, 24 configurations of density plumes. An important finding of this study is that density plumes are controlled by a plethora of 18 oceanographic, meteorological, and other external factors. Examples are: 1) Yellow River in China by tidal shear front and by a change in river course; 2) Yangtze River in China by shelf currents and vertical mixing by tides in winter months; 3) Rio de la Plata Estuary in Argentina and Uruguay by Ocean currents; 4) San Francisco Bay in California by tidal currents; 5) Gulf of Manner in the Indian Ocean by monsoonal currents; 6) Egypt in Red Sea by Eolian dust; 7) U.S. Atlantic margin by cyclones; 8) Sri Lanka by tsunamis; 9) Copper River in Alaska by high-gradient braid delta; 10) Lake Erie by seiche; 11) continental margin off Namibia by upwelling; 12) Bering Sea by phytoplankton; 13) the Great Bahama Bank in the Atlantic Ocean by fish activity; 14) Indonesia by volcanic activity; 15) Greenland by glacial melt; 16) South Pacific Ocean by coral reef; 17) Carolina continental Rise by pockmarks; and 18) Otsuchi Bay in Japan by internal bore. The prevailing trend in promoting a single type of river-flood triggered hyperpycnal flow is flawed because there are 16 types of hyperpycnal flows. River-flood derived hyperpycnal flows are muddy in texture and they occur close to the shoreline in inner shelf environments. Hyperpycnal flows are not viable transport mechanisms of sand and gravel across the shelf into the deep sea. The available field observations suggest that they do not form meter-thick sand layers in deep water settings. For the above reasons, river-flood triggered hyperpycnites are considered unsuitable for serving as petroleum reservoirs in deep-water environments until proven otherwise.展开更多
This paper presents the solution of regulating the wind rate automatically by means of fuzzy control technology and implementing it with PLC (programmable logical controller) under the circumstance of many influence f...This paper presents the solution of regulating the wind rate automatically by means of fuzzy control technology and implementing it with PLC (programmable logical controller) under the circumstance of many influence factors, which exists in the axial flow fans wind rate regulation system during the process of mine ventilation, and has difficulty in modifying the mathematic model to obtain the satisfied result by normal control ways. According to this analysis, the intelligent and analytic treatment of fuzzy controller has been made and fuzzy control scheme involving self regulation divisor and intelligent integral has been deeply proposed. Test result shows that this system based on the scheme above is obviously prior to others in its responsibility such as high speed, overshoot, control precision and robustness. The system furnishes the great reliability of mine working safety and fans running efficiency.展开更多
There is potential to significantly reduce CO_(2) emissions by increasing the efficiency and reducing the duty cycle of HVAC systems by using smart booster fans and dampers.Smart booster fans fit in the vents within a...There is potential to significantly reduce CO_(2) emissions by increasing the efficiency and reducing the duty cycle of HVAC systems by using smart booster fans and dampers.Smart booster fans fit in the vents within a home,operating quietly on low power(2W)to augment HVAC systems and improve their performance.In this study,a prototype duct system is used to measure and evaluate the ability for smart booster fans and dampers to control airflow to different vents for the purpose of increasing the efficiency of HVAC systems.Four case studies were evaluated:an HVAC system(1)without any fans or dampers,(2)with a fan installed in one vent,but without any dampers,(3)with dampers installed at the vents,but without any fans,and(4)with both fan and dampers installed.The results from both the experi-mental and numerical evaluation show that the smart booster fan and dampers can significantly improve the airflow at a vent that is underperforming.For example,the airflow at the last vent in a ducting branch was increased from 17 to 37 CFM when a smart booster fan was installed at this vent.Results from the numerical analysis show that for the case of an underperforming vent during the winter season the HVAC running time may be reduced from 24 hr/day to 5.6 hr/day.Furthermore,results from the numerical analysis show the HVAC running time is further reduced to 4.5 hr/day for cases 3 and 4.展开更多
Greenhouses are used for the main purpose of improving the environmental conditions in which plants are grown. There are many parameters can affect the growing of plants inside greenhouse, such as air temperature and ...Greenhouses are used for the main purpose of improving the environmental conditions in which plants are grown. There are many parameters can affect the growing of plants inside greenhouse, such as air temperature and relative humidity. The adjustment of these parameters is achieved by selecting appropriate control actions. This work proposes a controlling technique for greenhouse indoor temperature and relative humidity. The proposed greenhouse cooling system temperature controller is designed to adjust the air volume flow rate in pad-fan cooling system to fix the greenhouse indoor temperature at 20?C and 70% relative humidity. The designed control technique is realized to ensure the required and continuous operation of the greenhouse. Moreover, this work present, a complete mathematical modeling and simulation of cooling system is introduced. In addition, a computer model based on MATLAB SIMULINK software has been used to predict the temperature and relative humidity profiles inside the greenhouse. The results are realized the requirements of the greenhouse cooling system environment.展开更多
基金supported by the National Natural Science Foundation of China(Nos.6130422361374116+1 种基金61503185)Specialized Research Fund for the Doctoral Program of Higher Education(20123218120015)
文摘The structure and modeling of a novel unmanned coaxial rotor ducted fan helicopter(RDFH)are introduced,and then,based on the helicopter air dynamics and kinematics principles,a nonlinear model of the coaxial rotor ducted fan helicopter is developed and implemented on the basis of the wind tunnel experiment.After that,the helicopter′s stability and coupling characteristics of manipulation are analyzed through time-domain.Finally,a sliding mode controller(SMC)with boundary layers is developed on a hardware in the loop platform using digital signal processor(DSP)as the flight control computer.The results show that the RDFH′s tracking ability performs well under the use of proposed controller.
基金the National Institute for Occupational Safety and Health of USA for providing financial support for this project
文摘Recirculation is prohibited in many coal mining countries because of the fear that the re-use of return air would allow the build-up of air contaminants at the workings. The incorrect design and location of a booster fan in any ventilation network can create unsafe condition due to recirculation. The current approach to investigating recirculation using simulation software requires manual effort which becomes tedious in a complex and a large network. An algorithm-based C++ program was designed to detect the recirculation in a booster fan ventilation networks. This program needed an input file prepared from output file generated by any ventilation simulator. This program created an output file for recirculation. This program demonstrated the strong capability to detect the recirculation in a sample network and a coal mine ventilation network. The outcomes of this program were documented in this paper.
文摘The high flow-rate centrifugal fan needs a three-dimensional impeller to achieve a high efficiency. In this paper, the design procedure of a high-efficiency three-dimensional centrifugal fan is presented. First, the main dimensions of the fan were calculated by using the conventional one-dimensional method. Then, the blade loading or the angular momentum distribution along the meridional streamline on the blade surfaces is prescribed. After that, the three-dimensional blade is determined by using the streamline curvature method. With the aid of numerical simulations, the performance of the three-dimensional fan was improved and some of the key influence factors were investigated. The analyses indicate that, as to the high flow-rate centrifugal fan, the Stanitz modified formula is recommended to calculate the separation radius, rb. A proper increase in the separation radius is beneficial for the fan’s performance. It is also indicated that a decrease in the angular momentum on the hub leads to an increase in total pressure efficiency, under the condition of a given constant mean angular momentum at the outlet of the blade. In addition, the installation of a fairing on the hub plate can improve the fan’s efficiency evidently when the streamline curvature method is adopted to design the three-dimensional impeller.
基金Supported by the China National Science and Technology Major Project(2016ZX05004-002)National Natural Science Foundation of China(91328201)。
文摘To understand the evolution of the Miocene gravity flow deposits in the Lower Congo-Congo Fan Basin,this paper documents the Miocene sequence stratigraphic framework,the depositional characteristics and the controlling factors of the gravity flow system.Based on the establishment of high-resolution sequence stratigraphic framework,lithofacies characteristics and sedimentary units of the gravity flow deposits in the region are identified by using seismic,well logging and core data comprehensively,and the sedimentary evolution process is revealed and the controlling factors are discussed.The Miocene can be divided into four 3 rd-order sequences(SQ1-SQ4).The gravity flow deposits mainly include siliciclastic rock and pelite.The main sedimentary units include slumping deposits,mass transport deposits(MTD),channel fills,levee-overbank deposits,and frontal lobes.In the Early Miocene(SQ1),mainly gull-wing,weakly restricted to unrestricted depositional channel-overbank complexes and lobes were formed.In the early Middle Miocene(SQ2),W-shaped and weakly restricted erosional-depositional channels(multi-phase superposition)were subsequently developed.In the late Middle Miocene(SQ3),primarily U-shaped and restricted erosional channels were developed.In the Late Miocene(SQ4),largely V-shaped and deeply erosional isolated channels were formed in the study area.Climate cooling and continuous fall of the sea level made the study area change from toe of slope-submarine plain to lower continental slope,middle continental slope and finally to upper continental slope,which in turn affected the strength of the gravity flow.The three times of tectonic uplifting and climate cooling in the West African coast provided abundant sediment supply for the development of gravity flow deposits.Multistage activities of salt structures played important roles in redirecting,restricting,blocking and destroying the gravity flow deposits.Clarifying the characteristics,evolution and controlling factors of the Miocene gravity flow deposits in the Lower Congo-Congo Fan Basin can provide reference for deep-water petroleum exploration in this basin.
基金Supported by National Institute for Occupational Safety and Health (NIOSH) of USA(200-2009-30328)
文摘A booster fan is an underground main fan which is installed in series with a main surface fan and used to boost the air pressure of the ventilation to overcome mine resistance.Currently booster fans are used in several major coal mining countries including the United Kingdom,Australia,Poland and China.In the United States booster fans are prohibited in coal mines although they are used in several metal and non-metal mines.A study has been undertaken to examine alternatives for ventilating an underground room and pillar coal mine system.A feasibility study of a hypothetical situation has shown that current ventilation facilities are incapable of fulfilling mine air requirements in the future due to increased seam methane levels.A current ventilation network model has been prepared and projected to a mine five years plan."Ventsim visual" software simulations of different possible ventilation options have been conducted in which varying methane levels are found at working faces.The software can also undertake financial simulations and project present value total costs for the options under study.Several scenarios for improving the ventilation situation such as improving main surface fans,adding intake shafts,adding exhaust shafts and utilizing booster fans have been examined.After taking into account the total capital and operating costs for the five years mine plan the booster fan scenarios are recommended as being the best alternatives for further serious consideration by the mine.The optimum option is a properly sized and installed booster fan system that can be used to create safe work conditions,maintain adequate air quantity with lowest cost,generate a reduction in energy consumption and decrease mine system air leakage.
基金Supported by the National Key Research and Development Project(2020YFC1512500)。
文摘A novel coaxial ducted fan structure aircraft is proposed to enable the aircraft near vertical walls at high altitudes.The state space equation of the system can be obtained by correlation deduction and identification of the whole prototype model.Based on the duct test bench experiment and computational fluid dynamics(CFD)simulation analysis,the expressions between the different distances dWE from the rotor center of the prototype to the wall and the thrust,reaction torque,and tilting moment of the system under hovering conditions are obtained.The influence of the wall effect of the prototype is incorporated into the system model to analyze the relationship between distance dWE and the comprehensive controllability of the system.The results show that the system comprehensive controllability vector of other channels changes little with the decrease of the distance dWE,and only the controllability vector of the rolling channel increases significantly.At the same time,the tilting moment also increases significantly,which strengthens the tendency of the prototype to tilt towards the wall.
文摘The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key technologies for ensuring the success of rocket flights and has been a core topic in carrier rocket technology research. The Gravity-1 solid carrier rocket is the first solid rocket bundled rocket developed by China, adopting a configuration with four boosters and a core stage bundled together. During the actual flight process, the four booster engines are ignited first, and then, in the event of insufficient control force from the boosters, the core stage engine is ignited to participate in control. To address thrust asynchrony during the descent of the four boosters, an Extended State Observer(ESO) is employed in the control scheme for this flight segment. This involves real-time estimation and compensation of attitude parameters during flight, identification of thrust asynchrony among the boosters, and simultaneous determination of whether the core stage engine is ignited to participate in control.Through six degrees of freedom simulation analysis and Y1 flight test validation, this method has been proven to be correct and feasible.
文摘As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.
基金sponsored by the National Key Projects of Basic Research (Grant No. 2009CB219407)the Natural Science Foundation (Grant No. 40572067)
文摘Based on a large amount of seismic, drilling and core data, the characteristics of the early- middle Miocene submarine fans in the Baiyun Sag, northern South China Sea are investigated. By analyzing the sedimentary processes of submarine fans in SQ21 (SQ21 refers to the 3rd-order sequence with its bottom boundary 21 Ma), a sedimentary model of the sand-rich fans is established and the main factors controlling fan deposition are detailed. The results indicate that from early to middle Miocene the Pearl River Mouth Basin developed seven 3rd-order sequences in all, with each lowstand systems tract (LST) of the sequence corresponding to submarine fans. However, only the fans in SQ13.8 and SQ21 are sand-rich fans, the others being mud-rich fans. The cores reveal that the submarine fans in the Pearl River Mouth Basin developed five lithofacies: (1) mud clast-bearing sandstone, interpreted as channel deposits; (2) typical turbidite sandstones, also interpreted as channel deposits; (3) thin-bedded sandstone and mudstone, interpreted as channel-levee complex deposits; (4) massive sandstones, interpreted as lobe deposits; (5) massive mudstone, interpreted as hemipelagic mud. The sand-rich submarine fans in the Pearl River Mouth Basin mainly developed in LST, and in LST reverse faults were active, which led to the formation of accommodation on the shelf. Different from the theory of classic sequence stratigraphy, the accommodation on the shelf captures terrigenous debris transported by the Pearl River, and the uplift at the edge of shelf serves as a "Linear Source" for the deep water area instead of the Pearl River. Therefore, the fans mainly derived from the eroded debris from the uplift. Factors controlling fan deposition include the basin's tectonic framework, the evolution of the slope break, relative sea-level changes as well as the evolution of the fault system, and the fans are formed under the combination of the above factors.
文摘Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Therefore this paper introduces the new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device, projects a design of such control system based on PLC, and determines the principle of the control system, the execution software and the design flow. Site commissioning effect on Daqing Oilfield shows this fan-shaped adaptive balancing intelligent device can effectively adjust and monitor the pumping unit in real time, the balance even adjusts from 0.787 to 0.901, and integrated energy saving rate is 14.2%. It is approved that this control device is professionally designed, with strong compatibility, and high reliability.
文摘The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these images are in the public domain, there has not been any systematic compilation of configurations of density plumes associated with various sedimentary environments and processes. This article, based on 45 case studies covering 21 major rivers(e.g., Amazon, Betsiboka, Congo [Zaire], Copper, Hugli [Ganges], Mackenzie, Mississippi, Niger, Nile, Rhone, Rio de la Plata, Yellow, Yangtze, Zambezi, etc.) and six different depositional environments(i.e., marine, lacustrine, estuarine, lagoon, bay, and reef), is the first attempt in illustrating natural variability of configurations of density plumes in modern environments. There are, at least, 24 configurations of density plumes. An important finding of this study is that density plumes are controlled by a plethora of 18 oceanographic, meteorological, and other external factors. Examples are: 1) Yellow River in China by tidal shear front and by a change in river course; 2) Yangtze River in China by shelf currents and vertical mixing by tides in winter months; 3) Rio de la Plata Estuary in Argentina and Uruguay by Ocean currents; 4) San Francisco Bay in California by tidal currents; 5) Gulf of Manner in the Indian Ocean by monsoonal currents; 6) Egypt in Red Sea by Eolian dust; 7) U.S. Atlantic margin by cyclones; 8) Sri Lanka by tsunamis; 9) Copper River in Alaska by high-gradient braid delta; 10) Lake Erie by seiche; 11) continental margin off Namibia by upwelling; 12) Bering Sea by phytoplankton; 13) the Great Bahama Bank in the Atlantic Ocean by fish activity; 14) Indonesia by volcanic activity; 15) Greenland by glacial melt; 16) South Pacific Ocean by coral reef; 17) Carolina continental Rise by pockmarks; and 18) Otsuchi Bay in Japan by internal bore. The prevailing trend in promoting a single type of river-flood triggered hyperpycnal flow is flawed because there are 16 types of hyperpycnal flows. River-flood derived hyperpycnal flows are muddy in texture and they occur close to the shoreline in inner shelf environments. Hyperpycnal flows are not viable transport mechanisms of sand and gravel across the shelf into the deep sea. The available field observations suggest that they do not form meter-thick sand layers in deep water settings. For the above reasons, river-flood triggered hyperpycnites are considered unsuitable for serving as petroleum reservoirs in deep-water environments until proven otherwise.
文摘This paper presents the solution of regulating the wind rate automatically by means of fuzzy control technology and implementing it with PLC (programmable logical controller) under the circumstance of many influence factors, which exists in the axial flow fans wind rate regulation system during the process of mine ventilation, and has difficulty in modifying the mathematic model to obtain the satisfied result by normal control ways. According to this analysis, the intelligent and analytic treatment of fuzzy controller has been made and fuzzy control scheme involving self regulation divisor and intelligent integral has been deeply proposed. Test result shows that this system based on the scheme above is obviously prior to others in its responsibility such as high speed, overshoot, control precision and robustness. The system furnishes the great reliability of mine working safety and fans running efficiency.
基金support from the Natural Sciences and Engineering Research Council of Canada.
文摘There is potential to significantly reduce CO_(2) emissions by increasing the efficiency and reducing the duty cycle of HVAC systems by using smart booster fans and dampers.Smart booster fans fit in the vents within a home,operating quietly on low power(2W)to augment HVAC systems and improve their performance.In this study,a prototype duct system is used to measure and evaluate the ability for smart booster fans and dampers to control airflow to different vents for the purpose of increasing the efficiency of HVAC systems.Four case studies were evaluated:an HVAC system(1)without any fans or dampers,(2)with a fan installed in one vent,but without any dampers,(3)with dampers installed at the vents,but without any fans,and(4)with both fan and dampers installed.The results from both the experi-mental and numerical evaluation show that the smart booster fan and dampers can significantly improve the airflow at a vent that is underperforming.For example,the airflow at the last vent in a ducting branch was increased from 17 to 37 CFM when a smart booster fan was installed at this vent.Results from the numerical analysis show that for the case of an underperforming vent during the winter season the HVAC running time may be reduced from 24 hr/day to 5.6 hr/day.Furthermore,results from the numerical analysis show the HVAC running time is further reduced to 4.5 hr/day for cases 3 and 4.
文摘Greenhouses are used for the main purpose of improving the environmental conditions in which plants are grown. There are many parameters can affect the growing of plants inside greenhouse, such as air temperature and relative humidity. The adjustment of these parameters is achieved by selecting appropriate control actions. This work proposes a controlling technique for greenhouse indoor temperature and relative humidity. The proposed greenhouse cooling system temperature controller is designed to adjust the air volume flow rate in pad-fan cooling system to fix the greenhouse indoor temperature at 20?C and 70% relative humidity. The designed control technique is realized to ensure the required and continuous operation of the greenhouse. Moreover, this work present, a complete mathematical modeling and simulation of cooling system is introduced. In addition, a computer model based on MATLAB SIMULINK software has been used to predict the temperature and relative humidity profiles inside the greenhouse. The results are realized the requirements of the greenhouse cooling system environment.