We give some theorems of strong law of large numbers and complete convergence for sequences of φ-mixing random variables. In particular, Wittmann's strong law of large numbers and Teicher's strong law of large nnum...We give some theorems of strong law of large numbers and complete convergence for sequences of φ-mixing random variables. In particular, Wittmann's strong law of large numbers and Teicher's strong law of large nnumbers for independent random variables are generalized to the case of φ -minxing random variables.展开更多
This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and order...This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and orderd couples of states for Markov chains field on Cayley tree. Then they prove the Shannon-McMillan theorem with a.e. convergence for Markov chains field on Cayley tree. In the proof, a new technique in the study the strong limit theorem in probability theory is applied.展开更多
In this paper, strong laws of large numbers for weighted sums of ■-mixing sequence are investigated. Our results extend the corresponding results for negatively associated sequence to the case of ■-mixing sequence.
Some strong laws of large numbers for the frequencies of occurrence of states and ordered couples of states for nonsymmetric Markov chain fields (NSMC) on Cayley trees are studied. In the proof, a new technique for ...Some strong laws of large numbers for the frequencies of occurrence of states and ordered couples of states for nonsymmetric Markov chain fields (NSMC) on Cayley trees are studied. In the proof, a new technique for the study of strong limit theorems of Markov chains is extended to the case of Markov chain fields, The asymptotic equipartition properties with almost everywhere (a,e.) convergence for NSMC on Cayley trees are obtained,展开更多
Strong law of large numbers is a fundamental theory in probability and statistics. When the measure tool is nonadditive, this law is very different from additive case. In 2010 Chen investigated the strong law of large...Strong law of large numbers is a fundamental theory in probability and statistics. When the measure tool is nonadditive, this law is very different from additive case. In 2010 Chen investigated the strong law of large numbers under upper probabilityVby assumingVis continuous. This assumption is very strong. Upper probabilities may not be continuous. In this paper we prove the strong law of large numbers for an upper probability without the continuity assumption whereby random variables are quasi-continuous and the upper probability is generated by a weakly compact family of probabilities on a complete and separable metric sample space.展开更多
In this article, the strong laws of large numbers for array of rowwise asymptotically almost negatively associated(AANA) random variables are studied. Some sufficient conditions for strong laws of large numbers for ar...In this article, the strong laws of large numbers for array of rowwise asymptotically almost negatively associated(AANA) random variables are studied. Some sufficient conditions for strong laws of large numbers for array of rowwise AANA random variables are presented without assumption of identical distribution. Our results extend the corresponding ones for independent random variables to case of AANA random variables.展开更多
This note is devoted to introduce a new concept of conditionally dominated random variables.Under suitable restrict conditions,a general strong law of large numbers for arbitrary continuous random variables is obtained.
This paper introduces the concept of BC sequences and investigates some conditions which imply the strong law of large numbers for these sequences. The authors also study the strong law of large numbers for general ra...This paper introduces the concept of BC sequences and investigates some conditions which imply the strong law of large numbers for these sequences. The authors also study the strong law of large numbers for general random variable sequences. As applications of the result the authors characterize p-smoothableness of Banach space. Some generalizations of Petrov theorem, the Marcinkiewicz-Zygmund theorem and Hoffmann-J(?)rgensen and Pisier theorem are obtained.展开更多
This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgen...This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgensen and Pisier theorem are obtained. Key words strong law of large numbers - Banach space valued random variable sequence - p-smoothable Banach space CLC number O 211.4 - O 211.6 Foundation item: Supported by the National Natural Science Foundation of China (10071058)Biography: Gan Shi-xin (1939-), male, Professor, research direction: martingale theory, probability limiting theory and Banach space geometry theory.展开更多
In this paper, the Chung’s strong law of large numbers is generalized to the random variables which do not need the condition of independence, while the sequence of Borel functions verifies some conditions weaker tha...In this paper, the Chung’s strong law of large numbers is generalized to the random variables which do not need the condition of independence, while the sequence of Borel functions verifies some conditions weaker than that in Chung’s theorem. Some convergence theorems for martingale difference sequence such as Lp martingale difference sequence are the particular cases of results achieved in this paper. Finally, the convergence theorem for A-summability of sequence of random variables is proved, where A is a suitable real infinite matrix.展开更多
In this paper, we obtain the strong law of large numbers for a 2-dimensional array of pairwise negatively dependent random variables which are not required to be identically distributed. We found the sufficient condit...In this paper, we obtain the strong law of large numbers for a 2-dimensional array of pairwise negatively dependent random variables which are not required to be identically distributed. We found the sufficient conditions of strong law of large numbers for the difference of random variables which independent and identically distributed conditions are regarded. In this study, we consider the limit as which is stronger than the limit as m× n→?∞ when m, n →?∞?are natural numbers.展开更多
In the paper,we get the precise results of Hájek-Rényi type inequalities for the partial sums of negatively orthant dependent sequences,which improve the results of Theorem 3.1and Corollary 3.2 in Kim(2006)a...In the paper,we get the precise results of Hájek-Rényi type inequalities for the partial sums of negatively orthant dependent sequences,which improve the results of Theorem 3.1and Corollary 3.2 in Kim(2006)and the strong law of large numbers and strong growth rate for negatively orthant dependent sequences.展开更多
By using a Rosenthal type inequality established in this paper, the complete convergence and almost sure summability on the convergence rates with respect to the strong law of large numbers are discussed for *-mixing...By using a Rosenthal type inequality established in this paper, the complete convergence and almost sure summability on the convergence rates with respect to the strong law of large numbers are discussed for *-mixing random fields.展开更多
In this paper, by the three series theorem of m-negatively associated(m-NA,in short) random variables and the truncation method of random variables, we mainly investigated the strong convergence properties for partial...In this paper, by the three series theorem of m-negatively associated(m-NA,in short) random variables and the truncation method of random variables, we mainly investigated the strong convergence properties for partial sums of m-NA random variables.In addition, the Khintchine-Kolmogorov convergence theorem and Kolmogorov-type strong law of large numbers for m-NA random variables are also obtained. The results obtained in the paper generalize some corresponding ones for independent random variables and some dependent random variables.展开更多
In this paper, we give some conditions on diverging rate of series of the probabilities and converging rate of series of the α-mixing coefficients for sequences of events, under which the conclusion of the Second Bor...In this paper, we give some conditions on diverging rate of series of the probabilities and converging rate of series of the α-mixing coefficients for sequences of events, under which the conclusion of the Second Borel-Cantelli Lemma holds. As corollaries, some moment conditions are obtained, under which the strong law of large numbers holds for sequences of identically distributed random variables.展开更多
In this paper,we study the strong law of large numbers and Shannon-McMillan (S-M) theorem for Markov chains indexed by an infinite tree with uniformly bounded degree.The results generalize the analogous results on a h...In this paper,we study the strong law of large numbers and Shannon-McMillan (S-M) theorem for Markov chains indexed by an infinite tree with uniformly bounded degree.The results generalize the analogous results on a homogeneous tree.展开更多
Under very weak condition 0 × r(f) ↑ ∞, t→ ∞, we obtain a series of equivalent conditions of complete convergence for maxima of m-dimensional products of iid random variables, which provide a useful tool for ...Under very weak condition 0 × r(f) ↑ ∞, t→ ∞, we obtain a series of equivalent conditions of complete convergence for maxima of m-dimensional products of iid random variables, which provide a useful tool for researching this class of questions. Some results on strong law of large numbers are given such that our results are much stronger than the corresponding result of Gadidov’s.展开更多
We investigate three kinds of strong laws of large numbers for capacities with a new notion of independently and identically distributed(IID) random variables for sub-linear expectations initiated by Peng.It turns out...We investigate three kinds of strong laws of large numbers for capacities with a new notion of independently and identically distributed(IID) random variables for sub-linear expectations initiated by Peng.It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov's strong law of large numbers to the case where probability measures are no longer additive. An important feature of these strong laws of large numbers is to provide a frequentist perspective on capacities.展开更多
The strong laws of large numbers for countable nonhomogeneous Markov chains have been discussed (cf. [1]—[3] ), where various restrictions were imposed on the Markov chains. The purpose of this report is to give a cl...The strong laws of large numbers for countable nonhomogeneous Markov chains have been discussed (cf. [1]—[3] ), where various restrictions were imposed on the Markov chains. The purpose of this report is to give a class of strong laws of large numbers which hold for arbitrary nonhomogeneous Markov chains. As corollaries of the main result, a relation between the relative frequency of occurrence of state couples and the transition probability of arbitrary nonhomogeneous Markov chains is established.展开更多
This paper mainly studies the strong convergence properties for weighted sums of extended negatively dependent(END,for short)random variables.Some sufficient conditions to prove the strong law of large numbers for wei...This paper mainly studies the strong convergence properties for weighted sums of extended negatively dependent(END,for short)random variables.Some sufficient conditions to prove the strong law of large numbers for weighted sums of END random variables are provided.In particular,the authors obtain the weighted version of Kolmogorov type strong law of large numbers for END random variables as a product.The results that the authors obtained generalize the corresponding ones for independent random variables and some dependent random variables.As an application,the authors investigate the errors-in-variables(EV,for short)regression models and establish the strong consistency for the least square estimators.Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real example is analysed for illustration.展开更多
基金Supported by the National Natural Science Foundation of China (10671149)
文摘We give some theorems of strong law of large numbers and complete convergence for sequences of φ-mixing random variables. In particular, Wittmann's strong law of large numbers and Teicher's strong law of large nnumbers for independent random variables are generalized to the case of φ -minxing random variables.
文摘This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and orderd couples of states for Markov chains field on Cayley tree. Then they prove the Shannon-McMillan theorem with a.e. convergence for Markov chains field on Cayley tree. In the proof, a new technique in the study the strong limit theorem in probability theory is applied.
基金Foundation item: Supported by the National Natural Science Foundation of China(11171001, 11201001) Supported by the Natural Science Foundation of Anhui Province(t208085QA03, 1308085QA03)
文摘In this paper, strong laws of large numbers for weighted sums of ■-mixing sequence are investigated. Our results extend the corresponding results for negatively associated sequence to the case of ■-mixing sequence.
基金Supported by National Basic Research Program of China(973 Program No.2007CBS14903)National Science Foundation of China(70671069)
文摘Some strong laws of large numbers for the frequencies of occurrence of states and ordered couples of states for nonsymmetric Markov chain fields (NSMC) on Cayley trees are studied. In the proof, a new technique for the study of strong limit theorems of Markov chains is extended to the case of Markov chain fields, The asymptotic equipartition properties with almost everywhere (a,e.) convergence for NSMC on Cayley trees are obtained,
文摘Strong law of large numbers is a fundamental theory in probability and statistics. When the measure tool is nonadditive, this law is very different from additive case. In 2010 Chen investigated the strong law of large numbers under upper probabilityVby assumingVis continuous. This assumption is very strong. Upper probabilities may not be continuous. In this paper we prove the strong law of large numbers for an upper probability without the continuity assumption whereby random variables are quasi-continuous and the upper probability is generated by a weakly compact family of probabilities on a complete and separable metric sample space.
基金Supported by the National Natural Science Foundation of China(lilT1001, 11201001) Supported by the Natural Science Foundation of Anhui Province(1208085QA03)+1 种基金 Supported by the Talents Youth Fund of Anhui Province Universities(2012SQRL204) Supported by th Doctoral Research Start-up Funds Projects of Anhui University(33190250)
文摘In this article, the strong laws of large numbers for array of rowwise asymptotically almost negatively associated(AANA) random variables are studied. Some sufficient conditions for strong laws of large numbers for array of rowwise AANA random variables are presented without assumption of identical distribution. Our results extend the corresponding ones for independent random variables to case of AANA random variables.
基金Supported by the National Nature Science Foundation of China(10571076) Supported by Anhui High Education Research(2006Kj246B)
文摘This note is devoted to introduce a new concept of conditionally dominated random variables.Under suitable restrict conditions,a general strong law of large numbers for arbitrary continuous random variables is obtained.
基金Supported by the National Natural Science Foundation of China(10071058)
文摘This paper introduces the concept of BC sequences and investigates some conditions which imply the strong law of large numbers for these sequences. The authors also study the strong law of large numbers for general random variable sequences. As applications of the result the authors characterize p-smoothableness of Banach space. Some generalizations of Petrov theorem, the Marcinkiewicz-Zygmund theorem and Hoffmann-J(?)rgensen and Pisier theorem are obtained.
文摘This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgensen and Pisier theorem are obtained. Key words strong law of large numbers - Banach space valued random variable sequence - p-smoothable Banach space CLC number O 211.4 - O 211.6 Foundation item: Supported by the National Natural Science Foundation of China (10071058)Biography: Gan Shi-xin (1939-), male, Professor, research direction: martingale theory, probability limiting theory and Banach space geometry theory.
基金Project supported by the National Natural Science Foundation of China (No. 10571159) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 2002335090), China
文摘In this paper, the Chung’s strong law of large numbers is generalized to the random variables which do not need the condition of independence, while the sequence of Borel functions verifies some conditions weaker than that in Chung’s theorem. Some convergence theorems for martingale difference sequence such as Lp martingale difference sequence are the particular cases of results achieved in this paper. Finally, the convergence theorem for A-summability of sequence of random variables is proved, where A is a suitable real infinite matrix.
文摘In this paper, we obtain the strong law of large numbers for a 2-dimensional array of pairwise negatively dependent random variables which are not required to be identically distributed. We found the sufficient conditions of strong law of large numbers for the difference of random variables which independent and identically distributed conditions are regarded. In this study, we consider the limit as which is stronger than the limit as m× n→?∞ when m, n →?∞?are natural numbers.
基金Foundation of Anhui Educational Committee(No.KJ2013Z225)
文摘In the paper,we get the precise results of Hájek-Rényi type inequalities for the partial sums of negatively orthant dependent sequences,which improve the results of Theorem 3.1and Corollary 3.2 in Kim(2006)and the strong law of large numbers and strong growth rate for negatively orthant dependent sequences.
基金National Natural Science Foundation of China! (No. 19701O11) Foundation of "151 talent project" of Zhejiang provience.
文摘By using a Rosenthal type inequality established in this paper, the complete convergence and almost sure summability on the convergence rates with respect to the strong law of large numbers are discussed for *-mixing random fields.
基金Supported by the Natural Science Foundation of Anhui Province(1508085J06) the Key Projects for Academic Talent of Anhui Province(gxbj ZD2016005) the Students Innovative Training Project of Anhui University(201610357001)
文摘In this paper, by the three series theorem of m-negatively associated(m-NA,in short) random variables and the truncation method of random variables, we mainly investigated the strong convergence properties for partial sums of m-NA random variables.In addition, the Khintchine-Kolmogorov convergence theorem and Kolmogorov-type strong law of large numbers for m-NA random variables are also obtained. The results obtained in the paper generalize some corresponding ones for independent random variables and some dependent random variables.
基金Supported by the SCR of Chongqing Municipal Education Commission(KJ090703)
文摘In this paper, we give some conditions on diverging rate of series of the probabilities and converging rate of series of the α-mixing coefficients for sequences of events, under which the conclusion of the Second Borel-Cantelli Lemma holds. As corollaries, some moment conditions are obtained, under which the strong law of large numbers holds for sequences of identically distributed random variables.
基金the National Natural Science Foundation of China (Grant No.10571076)
文摘In this paper,we study the strong law of large numbers and Shannon-McMillan (S-M) theorem for Markov chains indexed by an infinite tree with uniformly bounded degree.The results generalize the analogous results on a homogeneous tree.
文摘Under very weak condition 0 × r(f) ↑ ∞, t→ ∞, we obtain a series of equivalent conditions of complete convergence for maxima of m-dimensional products of iid random variables, which provide a useful tool for researching this class of questions. Some results on strong law of large numbers are given such that our results are much stronger than the corresponding result of Gadidov’s.
基金supported by National Natural Science Foundation of China(Grant No.11231005)
文摘We investigate three kinds of strong laws of large numbers for capacities with a new notion of independently and identically distributed(IID) random variables for sub-linear expectations initiated by Peng.It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov's strong law of large numbers to the case where probability measures are no longer additive. An important feature of these strong laws of large numbers is to provide a frequentist perspective on capacities.
文摘The strong laws of large numbers for countable nonhomogeneous Markov chains have been discussed (cf. [1]—[3] ), where various restrictions were imposed on the Markov chains. The purpose of this report is to give a class of strong laws of large numbers which hold for arbitrary nonhomogeneous Markov chains. As corollaries of the main result, a relation between the relative frequency of occurrence of state couples and the transition probability of arbitrary nonhomogeneous Markov chains is established.
基金supported by the National Natural Science Foundation of China under Grant Nos.11671012 and 11871072the Natural Science Foundation of Anhui Province under Grant Nos.1808085QA03,1908085QA01,1908085QA07+1 种基金the Provincial Natural Science Research Project of Anhui Colleges under Grant No.KJ2019A0003the Students Innovative Training Project of Anhui University under Grant No.201910357002。
文摘This paper mainly studies the strong convergence properties for weighted sums of extended negatively dependent(END,for short)random variables.Some sufficient conditions to prove the strong law of large numbers for weighted sums of END random variables are provided.In particular,the authors obtain the weighted version of Kolmogorov type strong law of large numbers for END random variables as a product.The results that the authors obtained generalize the corresponding ones for independent random variables and some dependent random variables.As an application,the authors investigate the errors-in-variables(EV,for short)regression models and establish the strong consistency for the least square estimators.Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real example is analysed for illustration.