Hierarchical nitrogen-doped carbon nanocages (hNCNC) with large specific surface areas were used as a catalyst support to immobilize Pt nanoparticles by a microwave-assisted polyol method. The Pt/hNCNC catalyst with...Hierarchical nitrogen-doped carbon nanocages (hNCNC) with large specific surface areas were used as a catalyst support to immobilize Pt nanoparticles by a microwave-assisted polyol method. The Pt/hNCNC catalyst with 20 wt% loading has a homogeneous dispersion of Pt nanoparticles with the average size of 3.3 nm, which is smaller than 4.3 and 4.9 nm for the control catalysts with the same loading supported on hierarchical carbon nanocages (hCNC) and commercial Vulcan XC-72, respec- tively. Accordingly, Pt/hNCNC has a larger electrochemical surface area than Pt/hCNC and Pt/XC-72. The Pt/hNCNC catalyst exhibited excellent electrocatalytic activity and stability for methanol oxidation, which was better than the control catalysts. This was attributed to the en- hanced interaction between Pt and hNCNC due to nitrogen participation in the anchoring function. By making use of the unique advantages of the hNCNC support, a heavy Pt loading up to 60 wt% was prepared without serious agglomeration, which gave a high peak-current density per unit mass of catalyst of 95.6 mA/mg for achieving a high power density. These results showed the potential of the Pt/hNCNC catalyst for methanol oxidation and of the new hNCNC support for wide applications.展开更多
The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and...The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and detrimental environmental effects. Here, we describe metal‐free nitrogen‐doped carbon nanoblocks (NCNBs) with high nitrogen contents (4.11%), which have good electrocatalytic proper‐ties for ORRs. This material was fabricated using a scalable, one‐step process involving the pyrolysis of tris(hydroxymethyl)aminomethane (Tris) at 800℃. Rotating ring disk electrode measurements show that the NCNBs give a high electrocatalytic performance and have good stability in ORRs. The onset potential of the catalyst for the ORR is-0.05 V (vs Ag/AgCl), the ORR reduction peak potential is-0.20 V (vs Ag/AgCl), and the electron transfer number is 3.4. The NCNBs showed pronounced electrocatalytic activity, improved long‐term stability, and better tolerance of the methanol crosso‐ver effect compared with a commercial 20 wt%Pt/C catalyst. The composition and structure of, and nitrogen species in, the NCNBs were investigated using Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction. The pyroly‐sis of Tris at high temperature increases the number of active nitrogen sites, especially pyridinic nitrogen, which creates a net positive charge on adjacent carbon atoms, and the high positive charge promotes oxygen adsorption and reduction. The results show that NCNBs prepared by pyrolysis of Tris as nitrogen and carbon sources are a promising ORR catalyst for fuel cells.展开更多
N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation paramete...N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation parameters and their impact on the structure and photocatalytic activity under ultraviolet (UV) and visible light irra-diation were carried out. Multiple techniques (XRD, TEM, DRIF, DSC, and XPS) were commanded to characterize the crystal structures and chemical binding of N-doped TiO2. Its photocatalytic activity was examined by the deg- radation of organic compounds. The catalytic activity of the prepared N-doped TiO2 nanoparticles under visible light (λ〉400nm) irradiation is evidenced by the decomposition of 4-chlorophenol, showing that nitrogen atoms in the N-doped TiO2 nanoparticle catalyst are responsible for the visible light catalytic activity. The N-doped TiO2 nanoparticle catalyst prepared with this modified route exhibits higher catalytic activity under UV irradiation in contrast to TiO2 without N-doping. It is suggested that the doped nitrogen here is located at the interstitial site of TiO2 lattice.展开更多
Yellowish nitrogen-doped titania was produced through sol-gel method in mild condition, with the elemental nitrogen derived from aqua ammonia. The titania catalysts were characterized using XRD, BET, TEM, XPS, and UV-...Yellowish nitrogen-doped titania was produced through sol-gel method in mild condition, with the elemental nitrogen derived from aqua ammonia. The titania catalysts were characterized using XRD, BET, TEM, XPS, and UV-Vis diffuse reflectance spectrophotometer, and their photocatalytic activities were evaluated under UV and visible light, respec tively. The XRD results showed that all titania catalysts were anatase. More significantly, the crystallite size of nitrogen-doped titania increased with an increase in N/Ti proportion, and the doping of nitrogen could extend the absorption shoulder into the visible-light region, thus it possessed a higher visible-light activity illustrated by decolorization of methyl orange (65.3%) under the irradiation of visible light, whereas pure titania showed little of such kind of visible light activity. The UV-light activity of nitrogen-doped titania catalysts was worse than that of pure titania and Degussa P25. In the range of N/Ti proportion of 4-10 mol%, the activity of nitrogen-doped titania weakened appreciably in the visible-light region as the N/Ti proportion increased, whereas a reverse relationship existed under the irradiation of UV light.展开更多
Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we ...Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we reported a novel well-designed hierarchically porous nitrogen-doped carbon (HPNC) via acombination of salt template (ZnC12) and hard template (SiO2) as sulfur host for lithium-sulfur batter-ies. The low-melting ZnC12 is boiled off and leaves behind micropores and small size mesopores duringpyrolysis process, while the silica spheres are removed by acid leaching to generate interconnected 3Dnetwork of macropores. The HPNC-S electrode exhibits an initial specific capacity of 1355 mAh g^-l at 0.IC (IC= 1675 mAh g^-1 ), a high-rate capability of 623 mAh g-l at 2 C, and a small decay of 0.13% per cycleover 300 cycles at 0.2 C. This excellent rate capability and remarkable long-term cyclability of the HPNC-Selectrode are attributed to its hierarchical porous structures for confining the soluble lithium polysulfideas well as the nitrogen doping for high absorbability of lithium polysulfide.展开更多
Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air...Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air batteries. Herein, an efficient bifunctional electrocatalyst based on hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets(Co/N-Pg) is fabricated for Zn–air batteries. A lowcost biomass peach gum, consisting of carbon, oxygen, and hydrogen without other heteroatoms, was used as carbon source to form carbon matrix hosting hollow cobalt oxide nanoparticles. Meanwhile, the melamine was applied as nitrogen source and template precursor, which can convert to carbon-based template graphitic carbon nitride by polycondensation process. Owing to the unique structure and synergistic effect between hollow cobalt oxide nanoparticles and Co-N-C species, the proposal Co/N-Pg catalyst displays not only prominent bifunctional electrocatalytic activities for ORR and OER, but also excellent durability. Remarkably, the assembled Zn–air battery with Co/N-Pg air electrode exhibited a low discharge-charge voltage gap(0.81 V at 50 mA cm^-2) and high peak power density(119 mW cm^-2) with long-term cycling stability. This work presents an effective approach for engineering transition metal oxides and nitrogen modified carbon nanosheets to boost the performance of bifunctional electrocatalysts for Zn–air battery.展开更多
Potassium-ion batteries(KIBs)have great potential for applications in large-scale energy storage devices.However,the larger radius of K+leads to sluggish kinetics and inferior cycling performance,severely restricting ...Potassium-ion batteries(KIBs)have great potential for applications in large-scale energy storage devices.However,the larger radius of K+leads to sluggish kinetics and inferior cycling performance,severely restricting its practical applicability.Herein,we propose a rational strategy involving a Prussian blue analogue-derived graphitized carbon anode with fast and durable potassium storage capability,which is constructed by encapsulating cobalt nanoparticles in nitrogen-doped graphitized carbon(Co-NC).Both experimental and theoretical results show that N-doping effectively promotes the uniform dispersion of cobalt nanoparticles in the carbon matrix through Co-N bonds.Moreover,the cobalt nanoparticles and strong Co-N bonds synergistically form a threedimensional conductive network,increase the number of adsorption sites,and reduce the diffusion energy barrier,thereby facilitating the adsorption and the diffusion kinetics.These multiple effects lead to enhanced reversible capacities of 305 and 208.6 mAh g^−1 after 100 and 300 cycles at 0.05 and 0.1 A g^−1,respectively,demonstrating the applicability of the Co-NC anode for KIBs.展开更多
A novel Ag@nitrogen-doped porous carbon(Ag-NPC) composite was synthesized via a facile hydrothermal method and applied as an anode material in lithium-ion batteries(LIBs). Using this method, Ag nanoparticles(Ag NPs) w...A novel Ag@nitrogen-doped porous carbon(Ag-NPC) composite was synthesized via a facile hydrothermal method and applied as an anode material in lithium-ion batteries(LIBs). Using this method, Ag nanoparticles(Ag NPs) were embedded in NPC through thermal decomposition of Ag NO_3 in the pores of NPC. The reversible capacity of Ag-NPC remained at 852 m Ah g^(-1)after 200 cycles at a current density of 0.1 A g^(-1), showing its remarkable cycling stability. The enhancement of the electrochemical properties such as cycling performance,reversible capacity and rate performance of Ag-NPC compared to the NPC contributed to the synergistic effects between Ag NPs and NPC.展开更多
Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the ...Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the precursor on the resultant NOMC is extensively investigated by nitrogen adsorption-desorption measurements,scanning electron microscopy,X-ray photoelectron spectroscopy(XPS),cyclic voltammetry and rotating ring-disk electrode measurements.Salient findings are as follows.First,the precursor has a significant influence on the specific surface area and textural properties.The NOMC materials derived from pyrrole(C-PY-900:765 m^2/) and phenanthroline(C-Phen-900:746 m^2/) exhibit higher specific surface areas than the aniline analog(C-PA-900:569 m^2/).Second,the XPS results indicate that the total nitrogen content(ca.3.1–3.3 at%) is similar for the three carbon sources,except for a slight difference in the nitrogen configuration.Furthermore,the content of the nitrogen-activated carbon atoms is found to closely depend on the precursor,which is the highest for the phenanthroline-derived carbon.Third,the electrochemical results reveal that the electrocatalytic activity follows in the order C-PA-900 C-PY-900 C-Phen-900,confirming that the nitrogen-activated carbon atoms are the active sites for the oxygen reduction reaction(ORR).In summary,the precursor has considerable influence on the composition and textural properties of the NOMC materials,of which the ORR electrocatalytic activity can be enhanced through optimization of the NOMCs.展开更多
High-value reclamation of metal-polluted plants involved in phytoremediation is a big challenge.In this study,nitrogen-doped nanoporous carbon with large specific area of 2359.1 m^(2)g^(-1) is facilely fabricated from...High-value reclamation of metal-polluted plants involved in phytoremediation is a big challenge.In this study,nitrogen-doped nanoporous carbon with large specific area of 2359.1 m^(2)g^(-1) is facilely fabricated from metal-polluted miscanthus waste for efficient energy storage.The synergistic effect of KOH,urea and ammonia solution greatly improve the nitrogen quantity and surface area of the synthesized carbon.Electrodes fabricated with this carbon exhibit the excellent capacitance performance of 340.2 F g^(-1) at 0.5 A g^(-1) and a low combined resistance of 0.116Ω,which are competitive with most of previously reported carbon-based electrodes.In addition,the as-obtained carbon electrode shows a high specific capacitance retention of over 99.6%even after 5000 cycles.Furthermore,the symmetric supercapacitor fabricated using the synthesized carbon achieves a superior energy density of 25.3 Wh kg^(-1)(at 400 W kg^(-1))in 1 mol L^(-1) Na_(2)SO_(4)aqueous solution.This work provides an efficient route to upcycle metal-polluted plant waste for supercapacitor applications.展开更多
In this paper, nitrogen-doped hierarchical porous carbon(N-HPC) was prepared from polyaniline(PANI)/silica self-aggregates. H-bonding between N\\H groups in aniline/PANI and \\OH groups in nano silica template led to ...In this paper, nitrogen-doped hierarchical porous carbon(N-HPC) was prepared from polyaniline(PANI)/silica self-aggregates. H-bonding between N\\H groups in aniline/PANI and \\OH groups in nano silica template led to a self-assembly type, which enabled the formation of uniform N-HPC nanoparticles. Silica self-aggregates provided macroporous channels resulted in a decreased diffusion distance. After removing the hard template,the N-HPC had a high surface area(899 m^2·g^(-1)). Owing to two co-existed synergetic energy-storage mechanisms and the hierarchical porous structure, the obtained N-HPC exhibited a high specific capacitance of 218.75 F·g^(-1) at 0.5 A·g^(-1), compared with the nonporous nitrogen-doped carbon(N-C) derived from pure PANI. Moreover, the N-HPC electrode demonstrated excellent cycle life, retaining 99% of its initial specific capacitance after 1000 cycles.展开更多
Nitrogen-doped TiO_2–C composite nanofibers(TiO_2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO_2/N...Nitrogen-doped TiO_2–C composite nanofibers(TiO_2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO_2/N–C NFs exhibit a large specific surface area(213.04 m^2 g^(-1)) and a suitable nitrogen content(5.37 wt%). The large specific surface area can increase the contribution of the extrinsic pseudocapacitance, which greatly enhances the rate capability. Further, the diffusion coefficient of sodium ions(DNa_+) could be greatly improved by the incorporation of nitrogen atoms. Thus, the TiO_2/N–C NFs display excellent electrochemical properties in Na-ion batteries. A TiO_2/N–C NF anode delivers a high reversible discharge capacity of 265.8 mAh g^(-1) at 0.05 A g^(-1) and an outstanding long cycling performance even at a high current density(118.1 m Ah g^(-1)) with almost no capacity decay at 5 A g^(-1) over 2000 cycles. Therefore, this work sheds light on the application of TiO_2-based materials in sodium-ion batteries.展开更多
Direct electrochemical formation of hydrogen peroxide(H2O2) from pure O2 and H2on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and...Direct electrochemical formation of hydrogen peroxide(H2O2) from pure O2 and H2on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and is therefore of great interest from an academic and industrial point of view. Very recently,novel metal-free mesoporous nitrogen-doped carbon catalysts have attracted large attention due to the unique reactivity and selectivity for the electrochemical hydrogen peroxide formation [1–3]. In this work,we provide deeper insights into the electrocatalytic activity, selectivity and durability of novel metal-free mesoporous nitrogen-doped carbon catalyst for the peroxide formation with a particular emphasis on the influence of experimental reaction parameters such as p H value and electrode potential for three different electrolytes. We used two independent approaches for the investigation of electrochemical hydrogen peroxide formation, namely rotating ring-disk electrode(RRDE) technique and photometric UV–VIS technique. Our electrochemical and photometric results clearly revealed a considerable peroxide formation activity as well as high catalyst durability for the metal-free nitrogen-doped carbon catalyst material in both acidic as well as neutral medium at the same electrode potential under ambient temperature and pressure. In addition, the obtained electrochemical reactivity and selectivity indicate that the mechanisms for the electrochemical formation and decomposition of peroxide are strongly dependent on the p H value and electrode potential.展开更多
Potassium-ion hybrid capacitors(PIHCs)as a burgeoning research hotspot are an ideal replacement for lithium-ion hybrid capacitors(LIHCs).Here,we report nitrogen-doped porous carbon nanosheets(NPCNs)with enlarged inter...Potassium-ion hybrid capacitors(PIHCs)as a burgeoning research hotspot are an ideal replacement for lithium-ion hybrid capacitors(LIHCs).Here,we report nitrogen-doped porous carbon nanosheets(NPCNs)with enlarged interlayer spacing,abundant defects,and favorable mesoporous structures.The structural changes of NPCNs in potassiation and depotassiation processes are analyzed by using Raman spectroscopy and transmission electron microscopy.Due to the unique structure of NPCNs,the PIHC device assembled using NPCNs as both the anode and cathode material(double-functional self-matching material)exhibits a superior energy density of 128 Wh kg^(-1)with a capacity retention of 90.8%after 9000 cycles.This research can promote the development of double-functional self-matching materials for hybrid energy storage devices with ultra-high performance.展开更多
Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in car- bon dioxide (CO_2) hydrogenation at 633 K and 25 bar (1 bar = 10-5 Pa). The Fe/NCNT catalyst promoted ...Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in car- bon dioxide (CO_2) hydrogenation at 633 K and 25 bar (1 bar = 10-5 Pa). The Fe/NCNT catalyst promoted with both potassium (K) and manganese (Mn) showed high performance in CO_2 hydrogenation, reaching 34.9% conversion with a gas hourly space velocity (GHSV) of 3.1 L-(g·h)-1. Product selectivities were high for olefin products and low for short-chain alkanes for the K-promoted catalysts. When Fe/NCNT catalyst was promot- ed with both K and Mn, the catalytic activity was stable for 60 h of reaction time. The structural effect of the Mn promoter was demonstrated by X-ray diffraction (XRD), temperature-programmed reduction (TPR) with molecular hydrogen (H2), and in situ X-ray absorption near-edge structure (XANES) analysis. The Mn pro- moter stabilized wtistite (FeO) as an intermediate and lowered the TPR onset temperature. Catalytic ammo- nia (NH_3) decomposition was used as an additional probe reaction for characterizing the promoter effects. The Fe/NCNT catalyst promoted with both K and Mn had the highest catalytic activity, and the Mn-promoted Fe/NCNT catalysts had the highest thermal stability under reducing conditions.展开更多
The scarcity and weak durability of metal,especially precious metal catalysts are big obstacles for their large-scale application in many reactions.The state-of-the-art of the catalytic science prefers such type of ca...The scarcity and weak durability of metal,especially precious metal catalysts are big obstacles for their large-scale application in many reactions.The state-of-the-art of the catalytic science prefers such type of catalysts,which can replace metal-based catalysts to alleviate energy and environmental crises and exhibit catalytic performance comparable to or even exceeding these metal catalysts.Herein,we report that N-doped porous carbon(NKC)derived from cheap and abundant radish can be employed as versatile and efficient bifunctional catalysts in both the catalytic reduction of 4-nitrophenol(NRR)and oxidation of styrene(SOR).The series of NKC catalysts were prepared with a simple and facile one-pot strategy by coupling the N-doping,carbonization and KOH activation processes.These catalysts show hierarchical porosity,with the specific surface area,total pore volume and N-doping content ranging from 918.9-3062.7 m^2 g^-1,1.01-2.04 cm^3 g^-1 and 1.29-15.3 at%,respectively.Interestingly,our finding suggests that the catalytic performance is not directly related to these parameters but correlates positively with the content of graphitic N dopants,which is the dominant contributor for impelling both the NRR and SOR.Another intriguing finding is that for both reactions,the optimal catalyst was found to be the NKC-3-800 which possesses the highest graphitic N content of 3.13 at%.In addition,to gain insight into the catalytic behavior,analyses of kinetics and thermodynamics were performed,and the catalytic mechanisms were postulated.This work paves the way for the construction of biomass-derived N-doped carbon catalysts for bi-or even multi-functional applications in various organic reactions.展开更多
Large surface area,high conductivity,and rich active site of carbon electrode materials are necessary characteristics for energy storage devices.However,high conductivity and high nitrogen doping of carbon electrode m...Large surface area,high conductivity,and rich active site of carbon electrode materials are necessary characteristics for energy storage devices.However,high conductivity and high nitrogen doping of carbon electrode materials are difficult to coordinate.Here,a facile method via the carbonization of nitrogen-containing Schiff base polymer has been developed to prepare high conductivity and high nitrogen-doped hierarchical porous carbon.The organic components with a benzene ring structure in the polymer promote the formation of more sp^(2)-graphitized carbon,which is beneficial for the improvement of electrical conductivity.Nitrogen-doped hierarchical porous carbon calcined at 900℃ under the NH3 atmosphere possesses high nitrogen content of 7.48 at%,a large specific surface area of 1613.2m2/g,and high electrical conductivity of 2.7 S/cm.As electrode materials in an aqueous-based supercapacitor,nitrogen-doped hierarchical porous carbon exhibits superior specific capacitance of 385 F/g at 1 A/g as well as excellent rate performance(242 and 215 F/g at a current density of 100 and 200 A/g,respectively).In addition,the specific capacitance of electrode measured in a two-electrode system is 335 F/g at 1 A/g,and the long-term cycling stability can be achieved with more than 94%initial capacitance after 10000 cycles.The constructed symmetric supercapacitor delivers high energy density and high power density.The outstanding electrochemical performances combined with the novel and scalable synthetic approach make the nitrogen‐doped hierarchical porous carbon potential electrode material for electrochemical devices.展开更多
Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nit...Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nitrogen-doped hard carbon nanofibers(NHCNFs)were prepared by a lowtemperature carbonization treatment assisted with electrospinning technology.Density functional theory analysis elucidates the incorporation of nitrogen heteroatoms with various chemical states into carbon matrix would significantly alter the total electronic configurations,leading to the robust adsorption and efficient diffusion of Na atoms on electrode interface.The obtained material carbonized at 600°C(NHCNF-600)presented a reversible specific capacity of 191.0 mAh g^(−1)and no capacity decay after 200 cycles at 1 A g^(−1).It was found that the sodium-intercalated degree had a correlation with the electrochemical impedance.A sodium-intercalated potential of 0.2 V was adopted to lower the electrochemical impedance.The constructed sodium-ion capacitor with activated carbon cathode and presodiated NHCNF-600 anode can present an energy power density of 82.1 Wh kg^(−1)and a power density of 7.0 kW kg^(−1).展开更多
Molybdenum-based electrocatalysts are promising candidates of platinum (Pt)-based materials in electrocatalyzing hydrogen evolution reaction (HER), due to their cost-efficient and resembled electronic properties. Repo...Molybdenum-based electrocatalysts are promising candidates of platinum (Pt)-based materials in electrocatalyzing hydrogen evolution reaction (HER), due to their cost-efficient and resembled electronic properties. Reported herein is the preparation of molybdenum carbide nanoparticles uniformly decorated on nitrogen-modified carbons (Mo2C/NC) through the carbonization of Mo-based polymers under hydrogen atmosphere by using poly(p-phenylenediamine) and ammonium heptamolybdate polymer analogue as precursors. And the molybdenum nitride nanoparticles loaded on porous N-doped carbons (Mo2N/NC) are also fabricated by calcination the polymer precursors in nitrogen gas. The Mo2C/NC shows more excellent electrocatalytic activity than Mo2N/NC in 0.5 M H2SO4, together with robust long-term durability. The well-crystalline nanoparticles and the increased electron conductivity are the main characters responded for the high catalytic efficiency of the fabricated electrocatalysts. This easily fabrication procedure may provide a facile route to prepare non-noble metal carbide/nitride catalysts featuring wellengineered structural and textural peculiarities for realistic energy conversion system.展开更多
More stringent environmental legislation imposes severe requirements to reduce the sulfur content in diesel to ultra-low levels with high efficient catalysts.In this paper,a series of CoMo/NDC@alumina catalysts were s...More stringent environmental legislation imposes severe requirements to reduce the sulfur content in diesel to ultra-low levels with high efficient catalysts.In this paper,a series of CoMo/NDC@alumina catalysts were synthesized by combination of the chemical vapor deposition of nitrogen-doped carbon(NDC)using 1,10-phenanthroline and co-impregnation of Mo and Co active components.The optimal catalyst with additive of 25%1,10-phenanthroline was screened by a series of property characterization and the hydrodesulfrization(HDS)active test.The amount of“CoMoS”active phase of the optimal CoMo/C3 catalyst increased 5.3%as compared with the CoMo/c-Al_(2)O_(3).The introduction of NDC improved the sulfidation degree of Mo by 21.8%as compared to the CoMo/c-Al_(2)O_(3) catalyst,which was beneficial to form more active sites.The HDS conversion of the NDC supported catalysts are higher than CoMo/c-Al_(2)O_(3) whether for the dibenzothiophene(DBT)or 4,6-dimethyl dibenzothiophene(4,6-DMDBT).Further hydroprocessing evaluation with Dagang diesel revealed that the CoMo/C3 catalyst possessed higher HDS property and the removal rate of DBTs in the diesel increased by 4%–11%as compared to the CoMo/c-Al_(2)O_(3) catalyst.展开更多
基金supported by the National Natural Science Foundation of China(21473089,51232003,21373108,51571110,21573107)the Nation-al Basic Research Program of China(973 Program,2013CB932902)+2 种基金Suzhou Science and Technology Projects(ZXG2013025)Changzhou Science and Technology Projects(CE20130032)supported by a Project Funded by the Technology Support Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Hierarchical nitrogen-doped carbon nanocages (hNCNC) with large specific surface areas were used as a catalyst support to immobilize Pt nanoparticles by a microwave-assisted polyol method. The Pt/hNCNC catalyst with 20 wt% loading has a homogeneous dispersion of Pt nanoparticles with the average size of 3.3 nm, which is smaller than 4.3 and 4.9 nm for the control catalysts with the same loading supported on hierarchical carbon nanocages (hCNC) and commercial Vulcan XC-72, respec- tively. Accordingly, Pt/hNCNC has a larger electrochemical surface area than Pt/hCNC and Pt/XC-72. The Pt/hNCNC catalyst exhibited excellent electrocatalytic activity and stability for methanol oxidation, which was better than the control catalysts. This was attributed to the en- hanced interaction between Pt and hNCNC due to nitrogen participation in the anchoring function. By making use of the unique advantages of the hNCNC support, a heavy Pt loading up to 60 wt% was prepared without serious agglomeration, which gave a high peak-current density per unit mass of catalyst of 95.6 mA/mg for achieving a high power density. These results showed the potential of the Pt/hNCNC catalyst for methanol oxidation and of the new hNCNC support for wide applications.
基金supported by the National Natural Science Foundation of China (21375088,21575090)Scientific Research Project of Beijing Educational Committee (KM201410028006)+1 种基金Scientific Research Base Development Program of the Beijing Municipal Commission of EducationYouth Talent Project of the Beijing Municipal Commission of Education (CIT & TCD201504072)~~
文摘The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and detrimental environmental effects. Here, we describe metal‐free nitrogen‐doped carbon nanoblocks (NCNBs) with high nitrogen contents (4.11%), which have good electrocatalytic proper‐ties for ORRs. This material was fabricated using a scalable, one‐step process involving the pyrolysis of tris(hydroxymethyl)aminomethane (Tris) at 800℃. Rotating ring disk electrode measurements show that the NCNBs give a high electrocatalytic performance and have good stability in ORRs. The onset potential of the catalyst for the ORR is-0.05 V (vs Ag/AgCl), the ORR reduction peak potential is-0.20 V (vs Ag/AgCl), and the electron transfer number is 3.4. The NCNBs showed pronounced electrocatalytic activity, improved long‐term stability, and better tolerance of the methanol crosso‐ver effect compared with a commercial 20 wt%Pt/C catalyst. The composition and structure of, and nitrogen species in, the NCNBs were investigated using Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction. The pyroly‐sis of Tris at high temperature increases the number of active nitrogen sites, especially pyridinic nitrogen, which creates a net positive charge on adjacent carbon atoms, and the high positive charge promotes oxygen adsorption and reduction. The results show that NCNBs prepared by pyrolysis of Tris as nitrogen and carbon sources are a promising ORR catalyst for fuel cells.
基金Supported by the Science and Technology Research Program of Chongqing Education Commission (KJ050702), and the Natural Science Foundation Project of Chongqing Science and Technology(Commission (No.2007BB7208).
文摘N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation parameters and their impact on the structure and photocatalytic activity under ultraviolet (UV) and visible light irra-diation were carried out. Multiple techniques (XRD, TEM, DRIF, DSC, and XPS) were commanded to characterize the crystal structures and chemical binding of N-doped TiO2. Its photocatalytic activity was examined by the deg- radation of organic compounds. The catalytic activity of the prepared N-doped TiO2 nanoparticles under visible light (λ〉400nm) irradiation is evidenced by the decomposition of 4-chlorophenol, showing that nitrogen atoms in the N-doped TiO2 nanoparticle catalyst are responsible for the visible light catalytic activity. The N-doped TiO2 nanoparticle catalyst prepared with this modified route exhibits higher catalytic activity under UV irradiation in contrast to TiO2 without N-doping. It is suggested that the doped nitrogen here is located at the interstitial site of TiO2 lattice.
基金the Open Fund of the Key Laboratory of Enhanced Heat and Energy Conservation of Chinese Ministry of Education, South China University of Technology.
文摘Yellowish nitrogen-doped titania was produced through sol-gel method in mild condition, with the elemental nitrogen derived from aqua ammonia. The titania catalysts were characterized using XRD, BET, TEM, XPS, and UV-Vis diffuse reflectance spectrophotometer, and their photocatalytic activities were evaluated under UV and visible light, respec tively. The XRD results showed that all titania catalysts were anatase. More significantly, the crystallite size of nitrogen-doped titania increased with an increase in N/Ti proportion, and the doping of nitrogen could extend the absorption shoulder into the visible-light region, thus it possessed a higher visible-light activity illustrated by decolorization of methyl orange (65.3%) under the irradiation of visible light, whereas pure titania showed little of such kind of visible light activity. The UV-light activity of nitrogen-doped titania catalysts was worse than that of pure titania and Degussa P25. In the range of N/Ti proportion of 4-10 mol%, the activity of nitrogen-doped titania weakened appreciably in the visible-light region as the N/Ti proportion increased, whereas a reverse relationship existed under the irradiation of UV light.
基金financially supported by the National Key Research and Development Program of China (2016YFB0101202)the NSFC of China (Grants 91534205,21436003 and 21576031)Graduate Research and Innovation Foundation of Chongqing China (Grant No.CYB17021)
文摘Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we reported a novel well-designed hierarchically porous nitrogen-doped carbon (HPNC) via acombination of salt template (ZnC12) and hard template (SiO2) as sulfur host for lithium-sulfur batter-ies. The low-melting ZnC12 is boiled off and leaves behind micropores and small size mesopores duringpyrolysis process, while the silica spheres are removed by acid leaching to generate interconnected 3Dnetwork of macropores. The HPNC-S electrode exhibits an initial specific capacity of 1355 mAh g^-l at 0.IC (IC= 1675 mAh g^-1 ), a high-rate capability of 623 mAh g-l at 2 C, and a small decay of 0.13% per cycleover 300 cycles at 0.2 C. This excellent rate capability and remarkable long-term cyclability of the HPNC-Selectrode are attributed to its hierarchical porous structures for confining the soluble lithium polysulfideas well as the nitrogen doping for high absorbability of lithium polysulfide.
基金financially supported by the National Natural Science Foundation of China (Nos. 21506081, 21705058, 21676126)the Provincial Natural Science Foundation of Jiangsu (Nos. BK20170524, BK20160492)+2 种基金China Postdoctoral Science Foundation (No. 2018T110450)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsThe financial support from an ARC Discovery Project (No. DP180102003)
文摘Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air batteries. Herein, an efficient bifunctional electrocatalyst based on hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets(Co/N-Pg) is fabricated for Zn–air batteries. A lowcost biomass peach gum, consisting of carbon, oxygen, and hydrogen without other heteroatoms, was used as carbon source to form carbon matrix hosting hollow cobalt oxide nanoparticles. Meanwhile, the melamine was applied as nitrogen source and template precursor, which can convert to carbon-based template graphitic carbon nitride by polycondensation process. Owing to the unique structure and synergistic effect between hollow cobalt oxide nanoparticles and Co-N-C species, the proposal Co/N-Pg catalyst displays not only prominent bifunctional electrocatalytic activities for ORR and OER, but also excellent durability. Remarkably, the assembled Zn–air battery with Co/N-Pg air electrode exhibited a low discharge-charge voltage gap(0.81 V at 50 mA cm^-2) and high peak power density(119 mW cm^-2) with long-term cycling stability. This work presents an effective approach for engineering transition metal oxides and nitrogen modified carbon nanosheets to boost the performance of bifunctional electrocatalysts for Zn–air battery.
基金supported by National Natural Science Foundation of China(Grant No.51932011,51802356)Innovation-Driven Project of Central South University(No.2020CX024)+3 种基金the Research Support Fund of the Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology in Hunan Province(No.201809)the Program of Youth Talent Support for Hunan Province(2018RS3098)Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX2017B045)the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2020zzts075).
文摘Potassium-ion batteries(KIBs)have great potential for applications in large-scale energy storage devices.However,the larger radius of K+leads to sluggish kinetics and inferior cycling performance,severely restricting its practical applicability.Herein,we propose a rational strategy involving a Prussian blue analogue-derived graphitized carbon anode with fast and durable potassium storage capability,which is constructed by encapsulating cobalt nanoparticles in nitrogen-doped graphitized carbon(Co-NC).Both experimental and theoretical results show that N-doping effectively promotes the uniform dispersion of cobalt nanoparticles in the carbon matrix through Co-N bonds.Moreover,the cobalt nanoparticles and strong Co-N bonds synergistically form a threedimensional conductive network,increase the number of adsorption sites,and reduce the diffusion energy barrier,thereby facilitating the adsorption and the diffusion kinetics.These multiple effects lead to enhanced reversible capacities of 305 and 208.6 mAh g^−1 after 100 and 300 cycles at 0.05 and 0.1 A g^−1,respectively,demonstrating the applicability of the Co-NC anode for KIBs.
基金supported by the Scientific and Technological Innovation Platform of Fujian Province(2006L2003)
文摘A novel Ag@nitrogen-doped porous carbon(Ag-NPC) composite was synthesized via a facile hydrothermal method and applied as an anode material in lithium-ion batteries(LIBs). Using this method, Ag nanoparticles(Ag NPs) were embedded in NPC through thermal decomposition of Ag NO_3 in the pores of NPC. The reversible capacity of Ag-NPC remained at 852 m Ah g^(-1)after 200 cycles at a current density of 0.1 A g^(-1), showing its remarkable cycling stability. The enhancement of the electrochemical properties such as cycling performance,reversible capacity and rate performance of Ag-NPC compared to the NPC contributed to the synergistic effects between Ag NPs and NPC.
基金supported by the National Natural Science Foundation of China(21476087,21576101)the Innovation Project of Guangdong Department of Education(2014KTSCX016)+1 种基金the Science&Technology Research Project of Guangdong Province(2013B010405005,2014A010105041)the Fundamental Research Funds for the Central Universities~~
文摘Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the precursor on the resultant NOMC is extensively investigated by nitrogen adsorption-desorption measurements,scanning electron microscopy,X-ray photoelectron spectroscopy(XPS),cyclic voltammetry and rotating ring-disk electrode measurements.Salient findings are as follows.First,the precursor has a significant influence on the specific surface area and textural properties.The NOMC materials derived from pyrrole(C-PY-900:765 m^2/) and phenanthroline(C-Phen-900:746 m^2/) exhibit higher specific surface areas than the aniline analog(C-PA-900:569 m^2/).Second,the XPS results indicate that the total nitrogen content(ca.3.1–3.3 at%) is similar for the three carbon sources,except for a slight difference in the nitrogen configuration.Furthermore,the content of the nitrogen-activated carbon atoms is found to closely depend on the precursor,which is the highest for the phenanthroline-derived carbon.Third,the electrochemical results reveal that the electrocatalytic activity follows in the order C-PA-900 C-PY-900 C-Phen-900,confirming that the nitrogen-activated carbon atoms are the active sites for the oxygen reduction reaction(ORR).In summary,the precursor has considerable influence on the composition and textural properties of the NOMC materials,of which the ORR electrocatalytic activity can be enhanced through optimization of the NOMCs.
基金financial supports from KeyArea Research and Development Program of Guangdong Province(2019B110209003)Guangdong Basic and Applied Basic Research Foundation(2019B1515120058,2020A1515011149)+3 种基金National Key R&D Program of China(2018YFD0800700)National Ten Thousand Talent Plan,National Natural Science Foundation of China(21776324)the Fundamental Research Funds for the Central Universities(19lgzd25)Hundred Talent Plan(201602)from Sun Yatsen University。
文摘High-value reclamation of metal-polluted plants involved in phytoremediation is a big challenge.In this study,nitrogen-doped nanoporous carbon with large specific area of 2359.1 m^(2)g^(-1) is facilely fabricated from metal-polluted miscanthus waste for efficient energy storage.The synergistic effect of KOH,urea and ammonia solution greatly improve the nitrogen quantity and surface area of the synthesized carbon.Electrodes fabricated with this carbon exhibit the excellent capacitance performance of 340.2 F g^(-1) at 0.5 A g^(-1) and a low combined resistance of 0.116Ω,which are competitive with most of previously reported carbon-based electrodes.In addition,the as-obtained carbon electrode shows a high specific capacitance retention of over 99.6%even after 5000 cycles.Furthermore,the symmetric supercapacitor fabricated using the synthesized carbon achieves a superior energy density of 25.3 Wh kg^(-1)(at 400 W kg^(-1))in 1 mol L^(-1) Na_(2)SO_(4)aqueous solution.This work provides an efficient route to upcycle metal-polluted plant waste for supercapacitor applications.
基金Supported by the National Natural Science Foundation of China(21401079,21501069)Fundamental Research Funds for Central Universities(JUSRP51626B)+2 种基金the Natural Science Foundation of Jiangsu Province of China(BK20140158,BK20161128,BK20161166)Natural Science Fund for Colleges and Universities in Jiangsu Province(18KJD430008,17KJD430005,17KJB430032)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(PPZY2015B181)
文摘In this paper, nitrogen-doped hierarchical porous carbon(N-HPC) was prepared from polyaniline(PANI)/silica self-aggregates. H-bonding between N\\H groups in aniline/PANI and \\OH groups in nano silica template led to a self-assembly type, which enabled the formation of uniform N-HPC nanoparticles. Silica self-aggregates provided macroporous channels resulted in a decreased diffusion distance. After removing the hard template,the N-HPC had a high surface area(899 m^2·g^(-1)). Owing to two co-existed synergetic energy-storage mechanisms and the hierarchical porous structure, the obtained N-HPC exhibited a high specific capacitance of 218.75 F·g^(-1) at 0.5 A·g^(-1), compared with the nonporous nitrogen-doped carbon(N-C) derived from pure PANI. Moreover, the N-HPC electrode demonstrated excellent cycle life, retaining 99% of its initial specific capacitance after 1000 cycles.
基金supported financially by the National Natural Science Foundation of China (Grant No.51672234)Hunan 2011 Collaborative Innovation Center of Chemical Engineering and Technology with Environmental Benignity and Effective Resource Utilization, Program for Innovative Research Cultivation Team in University of Ministry of Education of China (1337304)the 111 Project (B12015)
文摘Nitrogen-doped TiO_2–C composite nanofibers(TiO_2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO_2/N–C NFs exhibit a large specific surface area(213.04 m^2 g^(-1)) and a suitable nitrogen content(5.37 wt%). The large specific surface area can increase the contribution of the extrinsic pseudocapacitance, which greatly enhances the rate capability. Further, the diffusion coefficient of sodium ions(DNa_+) could be greatly improved by the incorporation of nitrogen atoms. Thus, the TiO_2/N–C NFs display excellent electrochemical properties in Na-ion batteries. A TiO_2/N–C NF anode delivers a high reversible discharge capacity of 265.8 mAh g^(-1) at 0.05 A g^(-1) and an outstanding long cycling performance even at a high current density(118.1 m Ah g^(-1)) with almost no capacity decay at 5 A g^(-1) over 2000 cycles. Therefore, this work sheds light on the application of TiO_2-based materials in sodium-ion batteries.
基金supported by the Technische Universitat Berlin,the Max Planck Society and the Cluster of Excellence“Unifying Concepts in Catalysis(Uni Cat)”
文摘Direct electrochemical formation of hydrogen peroxide(H2O2) from pure O2 and H2on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and is therefore of great interest from an academic and industrial point of view. Very recently,novel metal-free mesoporous nitrogen-doped carbon catalysts have attracted large attention due to the unique reactivity and selectivity for the electrochemical hydrogen peroxide formation [1–3]. In this work,we provide deeper insights into the electrocatalytic activity, selectivity and durability of novel metal-free mesoporous nitrogen-doped carbon catalyst for the peroxide formation with a particular emphasis on the influence of experimental reaction parameters such as p H value and electrode potential for three different electrolytes. We used two independent approaches for the investigation of electrochemical hydrogen peroxide formation, namely rotating ring-disk electrode(RRDE) technique and photometric UV–VIS technique. Our electrochemical and photometric results clearly revealed a considerable peroxide formation activity as well as high catalyst durability for the metal-free nitrogen-doped carbon catalyst material in both acidic as well as neutral medium at the same electrode potential under ambient temperature and pressure. In addition, the obtained electrochemical reactivity and selectivity indicate that the mechanisms for the electrochemical formation and decomposition of peroxide are strongly dependent on the p H value and electrode potential.
基金financially supported by the National Natural Science Foundation of China(Nos.21873026,21573061,21773059)。
文摘Potassium-ion hybrid capacitors(PIHCs)as a burgeoning research hotspot are an ideal replacement for lithium-ion hybrid capacitors(LIHCs).Here,we report nitrogen-doped porous carbon nanosheets(NPCNs)with enlarged interlayer spacing,abundant defects,and favorable mesoporous structures.The structural changes of NPCNs in potassiation and depotassiation processes are analyzed by using Raman spectroscopy and transmission electron microscopy.Due to the unique structure of NPCNs,the PIHC device assembled using NPCNs as both the anode and cathode material(double-functional self-matching material)exhibits a superior energy density of 128 Wh kg^(-1)with a capacity retention of 90.8%after 9000 cycles.This research can promote the development of double-functional self-matching materials for hybrid energy storage devices with ultra-high performance.
基金supported by the Synchrotron Light Research Institute(Public Organization)Thailand(GS-54-D01)+7 种基金the Commission on Higher EducationMinistry of EducationThailandperformed under the project"Sustainable Chemical Synthesis(Sus Chem Sys)"which is co-financed by the European Regional Development Fund(ERDF)the state of North Rhine-WestphaliaGermanyunder the Operational Programme"Regional Competitiveness and Employment"2007–2013
文摘Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in car- bon dioxide (CO_2) hydrogenation at 633 K and 25 bar (1 bar = 10-5 Pa). The Fe/NCNT catalyst promoted with both potassium (K) and manganese (Mn) showed high performance in CO_2 hydrogenation, reaching 34.9% conversion with a gas hourly space velocity (GHSV) of 3.1 L-(g·h)-1. Product selectivities were high for olefin products and low for short-chain alkanes for the K-promoted catalysts. When Fe/NCNT catalyst was promot- ed with both K and Mn, the catalytic activity was stable for 60 h of reaction time. The structural effect of the Mn promoter was demonstrated by X-ray diffraction (XRD), temperature-programmed reduction (TPR) with molecular hydrogen (H2), and in situ X-ray absorption near-edge structure (XANES) analysis. The Mn pro- moter stabilized wtistite (FeO) as an intermediate and lowered the TPR onset temperature. Catalytic ammo- nia (NH_3) decomposition was used as an additional probe reaction for characterizing the promoter effects. The Fe/NCNT catalyst promoted with both K and Mn had the highest catalytic activity, and the Mn-promoted Fe/NCNT catalysts had the highest thermal stability under reducing conditions.
文摘The scarcity and weak durability of metal,especially precious metal catalysts are big obstacles for their large-scale application in many reactions.The state-of-the-art of the catalytic science prefers such type of catalysts,which can replace metal-based catalysts to alleviate energy and environmental crises and exhibit catalytic performance comparable to or even exceeding these metal catalysts.Herein,we report that N-doped porous carbon(NKC)derived from cheap and abundant radish can be employed as versatile and efficient bifunctional catalysts in both the catalytic reduction of 4-nitrophenol(NRR)and oxidation of styrene(SOR).The series of NKC catalysts were prepared with a simple and facile one-pot strategy by coupling the N-doping,carbonization and KOH activation processes.These catalysts show hierarchical porosity,with the specific surface area,total pore volume and N-doping content ranging from 918.9-3062.7 m^2 g^-1,1.01-2.04 cm^3 g^-1 and 1.29-15.3 at%,respectively.Interestingly,our finding suggests that the catalytic performance is not directly related to these parameters but correlates positively with the content of graphitic N dopants,which is the dominant contributor for impelling both the NRR and SOR.Another intriguing finding is that for both reactions,the optimal catalyst was found to be the NKC-3-800 which possesses the highest graphitic N content of 3.13 at%.In addition,to gain insight into the catalytic behavior,analyses of kinetics and thermodynamics were performed,and the catalytic mechanisms were postulated.This work paves the way for the construction of biomass-derived N-doped carbon catalysts for bi-or even multi-functional applications in various organic reactions.
基金Peng Wang and Xiaohuan Qi contributed equally to this study.This study was supported by the National Key Research and Development Program(Grant No.2016YFB0901600)National Natural Science Foundation of China(Grant Nos.21801247,51672295,51972326,and 21871008)the Key Research Program of Frontier Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC013).
文摘Large surface area,high conductivity,and rich active site of carbon electrode materials are necessary characteristics for energy storage devices.However,high conductivity and high nitrogen doping of carbon electrode materials are difficult to coordinate.Here,a facile method via the carbonization of nitrogen-containing Schiff base polymer has been developed to prepare high conductivity and high nitrogen-doped hierarchical porous carbon.The organic components with a benzene ring structure in the polymer promote the formation of more sp^(2)-graphitized carbon,which is beneficial for the improvement of electrical conductivity.Nitrogen-doped hierarchical porous carbon calcined at 900℃ under the NH3 atmosphere possesses high nitrogen content of 7.48 at%,a large specific surface area of 1613.2m2/g,and high electrical conductivity of 2.7 S/cm.As electrode materials in an aqueous-based supercapacitor,nitrogen-doped hierarchical porous carbon exhibits superior specific capacitance of 385 F/g at 1 A/g as well as excellent rate performance(242 and 215 F/g at a current density of 100 and 200 A/g,respectively).In addition,the specific capacitance of electrode measured in a two-electrode system is 335 F/g at 1 A/g,and the long-term cycling stability can be achieved with more than 94%initial capacitance after 10000 cycles.The constructed symmetric supercapacitor delivers high energy density and high power density.The outstanding electrochemical performances combined with the novel and scalable synthetic approach make the nitrogen‐doped hierarchical porous carbon potential electrode material for electrochemical devices.
基金supported by the National Natural Science Foundation of China(No.51907193,51822706,and 51777200)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-JSC047)the Youth Innovation Promotion Association,CAS(No.2020145)
文摘Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nitrogen-doped hard carbon nanofibers(NHCNFs)were prepared by a lowtemperature carbonization treatment assisted with electrospinning technology.Density functional theory analysis elucidates the incorporation of nitrogen heteroatoms with various chemical states into carbon matrix would significantly alter the total electronic configurations,leading to the robust adsorption and efficient diffusion of Na atoms on electrode interface.The obtained material carbonized at 600°C(NHCNF-600)presented a reversible specific capacity of 191.0 mAh g^(−1)and no capacity decay after 200 cycles at 1 A g^(−1).It was found that the sodium-intercalated degree had a correlation with the electrochemical impedance.A sodium-intercalated potential of 0.2 V was adopted to lower the electrochemical impedance.The constructed sodium-ion capacitor with activated carbon cathode and presodiated NHCNF-600 anode can present an energy power density of 82.1 Wh kg^(−1)and a power density of 7.0 kW kg^(−1).
基金supported by the National Natural Science Foundation of China (21421001, 21573115)the 111 project (B12015)+1 种基金the Fundamental Research Funds for the Central Universities (63185015)the Foundation of State Key Laboratory of Highefficiency Utilization of Coal and Green Chemical Engineering (2017-K13)
文摘Molybdenum-based electrocatalysts are promising candidates of platinum (Pt)-based materials in electrocatalyzing hydrogen evolution reaction (HER), due to their cost-efficient and resembled electronic properties. Reported herein is the preparation of molybdenum carbide nanoparticles uniformly decorated on nitrogen-modified carbons (Mo2C/NC) through the carbonization of Mo-based polymers under hydrogen atmosphere by using poly(p-phenylenediamine) and ammonium heptamolybdate polymer analogue as precursors. And the molybdenum nitride nanoparticles loaded on porous N-doped carbons (Mo2N/NC) are also fabricated by calcination the polymer precursors in nitrogen gas. The Mo2C/NC shows more excellent electrocatalytic activity than Mo2N/NC in 0.5 M H2SO4, together with robust long-term durability. The well-crystalline nanoparticles and the increased electron conductivity are the main characters responded for the high catalytic efficiency of the fabricated electrocatalysts. This easily fabrication procedure may provide a facile route to prepare non-noble metal carbide/nitride catalysts featuring wellengineered structural and textural peculiarities for realistic energy conversion system.
基金supports by National Natural Science Foundation of China(NSFC)(Nos.21878329 and 21476257)the National Key Research and Development Program Nanotechnology Specific Project(No.2020YFA0210900)Science Foundation of China University of Petroleum,Beijing(No.2462018QZDX04).
文摘More stringent environmental legislation imposes severe requirements to reduce the sulfur content in diesel to ultra-low levels with high efficient catalysts.In this paper,a series of CoMo/NDC@alumina catalysts were synthesized by combination of the chemical vapor deposition of nitrogen-doped carbon(NDC)using 1,10-phenanthroline and co-impregnation of Mo and Co active components.The optimal catalyst with additive of 25%1,10-phenanthroline was screened by a series of property characterization and the hydrodesulfrization(HDS)active test.The amount of“CoMoS”active phase of the optimal CoMo/C3 catalyst increased 5.3%as compared with the CoMo/c-Al_(2)O_(3).The introduction of NDC improved the sulfidation degree of Mo by 21.8%as compared to the CoMo/c-Al_(2)O_(3) catalyst,which was beneficial to form more active sites.The HDS conversion of the NDC supported catalysts are higher than CoMo/c-Al_(2)O_(3) whether for the dibenzothiophene(DBT)or 4,6-dimethyl dibenzothiophene(4,6-DMDBT).Further hydroprocessing evaluation with Dagang diesel revealed that the CoMo/C3 catalyst possessed higher HDS property and the removal rate of DBTs in the diesel increased by 4%–11%as compared to the CoMo/c-Al_(2)O_(3) catalyst.