The World Ocean Database(WOD) is used to evaluate the halocline depth simulated by an ice-ocean coupled model in the Canada Basin during 1990–2008. Statistical results show that the simulated halocline is reliable....The World Ocean Database(WOD) is used to evaluate the halocline depth simulated by an ice-ocean coupled model in the Canada Basin during 1990–2008. Statistical results show that the simulated halocline is reliable.Comparing of the September sea ice extent between simulation and SSM/I dataset, a consistent interannual variability is found between them. Moreover, both the simulated and observed September sea ice extent show staircase declines in 2000–2008 compared to 1990–1999. That supports that the abrupt variations of the ocean surface stress curl anomaly in 2000–2008 are caused by rapid sea ice melting and also in favor of the realistic existence of the simulated variations. Responses to these changes can be found in the upper ocean circulation and the intermediate current variations in these two phases as well. The analysis shows that seasonal variations of the halocline are regulated by the seasonal variations of the Ekman pumping. On interannual time scale, the variations of the halocline have an inverse relationship with the ocean surface stress curl anomaly after 2000,while this relationship no longer applies in the 1990 s. It is pointed out that the regime shift in the Canada Basin can be derived to illustrate this phenomenon. Specifically, the halocline variations are dominated by advection in the 1990 s and Ekman pumping in the 2000 s respectively. Furthermore, the regime shift is caused by changing Transpolar Drift pathway and Ekman pumping area due to spatial deformation of the center Beaufort high(BH)relative to climatology.展开更多
This study analyzes monthly variability of thermocline and its mechanism in the South China Sea (SCS). The study is based on 51-year (1960-2010) monthly seawater temperature and surface wind stress data from Simpl...This study analyzes monthly variability of thermocline and its mechanism in the South China Sea (SCS). The study is based on 51-year (1960-2010) monthly seawater temperature and surface wind stress data from Simple Ocean Data Assimilation (SODA), together with heat flux, precipitation and evaporation data from the National Centers for Environmental Prediction (NCEP), the National Oceanic and Atmospheric Administration (NOAA) and the Woods Hole Oceanographic Institution, respectively. The results reveal that the upper boundary depth (Zup), lower boundary depth (Zlow), thickness (AZ) and intensity (Tz) of thermocline in the SCS show remarkable monthly variability. Being averaged for the deep basin of SCS, Zup deepens gradually from May to the following January and then shoals from February to May, while Zow varies little throughout the whole year. Further diagnostics indicates that the monthly variability of Zup is mainly caused by the buoyancy flux and wind stress curl. Using a linear method, the impacts of the buoyancy flux and wind stress curl on Zup can be quantitatively distinguished. The results suggest that Zup tends to deepen about 4.6 m when the buoyancy flux increases by 1 × 10.5 kg/(m·s3), while it shoals about 2.5 m when the wind stress curl strengthens by 1 × 10-7 N/m3.展开更多
Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck ...Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck for multi-pattern matching on online compressed network traffic(CNT), this is because malicious and intrusion codes are often embedded into compressed network traffic. In this paper, we propose an online fast and multi-pattern matching algorithm on compressed network traffic(FMMCN). FMMCN employs two types of jumping, i.e. jumping during sliding window and a string jump scanning strategy to skip unnecessary compressed bytes. Moreover, FMMCN has the ability to efficiently process multiple large volume of networks such as HTTP traffic, vehicles traffic, and other Internet-based services. The experimental results show that FMMCN can ignore more than 89.5% of bytes, and its maximum speed reaches 176.470MB/s in a midrange switches device, which is faster than the current fastest algorithm ACCH by almost 73.15 MB/s.展开更多
The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to a...The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.展开更多
基金The National Basic Research Program(973 Program)of China under contract No.2015CB953900the National Natural Science Foundation of China under contract No.41330960
文摘The World Ocean Database(WOD) is used to evaluate the halocline depth simulated by an ice-ocean coupled model in the Canada Basin during 1990–2008. Statistical results show that the simulated halocline is reliable.Comparing of the September sea ice extent between simulation and SSM/I dataset, a consistent interannual variability is found between them. Moreover, both the simulated and observed September sea ice extent show staircase declines in 2000–2008 compared to 1990–1999. That supports that the abrupt variations of the ocean surface stress curl anomaly in 2000–2008 are caused by rapid sea ice melting and also in favor of the realistic existence of the simulated variations. Responses to these changes can be found in the upper ocean circulation and the intermediate current variations in these two phases as well. The analysis shows that seasonal variations of the halocline are regulated by the seasonal variations of the Ekman pumping. On interannual time scale, the variations of the halocline have an inverse relationship with the ocean surface stress curl anomaly after 2000,while this relationship no longer applies in the 1990 s. It is pointed out that the regime shift in the Canada Basin can be derived to illustrate this phenomenon. Specifically, the halocline variations are dominated by advection in the 1990 s and Ekman pumping in the 2000 s respectively. Furthermore, the regime shift is caused by changing Transpolar Drift pathway and Ekman pumping area due to spatial deformation of the center Beaufort high(BH)relative to climatology.
基金Supported by the National Basic Research Program of China(973 Program)(No.2015CB954004)the Strategic Leading Science and Technology Projects of Chinese Academy of Sciences(No.XDA1102030104)the National Natural Science Foundation of China(Nos.U1405233,41176031)
文摘This study analyzes monthly variability of thermocline and its mechanism in the South China Sea (SCS). The study is based on 51-year (1960-2010) monthly seawater temperature and surface wind stress data from Simple Ocean Data Assimilation (SODA), together with heat flux, precipitation and evaporation data from the National Centers for Environmental Prediction (NCEP), the National Oceanic and Atmospheric Administration (NOAA) and the Woods Hole Oceanographic Institution, respectively. The results reveal that the upper boundary depth (Zup), lower boundary depth (Zlow), thickness (AZ) and intensity (Tz) of thermocline in the SCS show remarkable monthly variability. Being averaged for the deep basin of SCS, Zup deepens gradually from May to the following January and then shoals from February to May, while Zow varies little throughout the whole year. Further diagnostics indicates that the monthly variability of Zup is mainly caused by the buoyancy flux and wind stress curl. Using a linear method, the impacts of the buoyancy flux and wind stress curl on Zup can be quantitatively distinguished. The results suggest that Zup tends to deepen about 4.6 m when the buoyancy flux increases by 1 × 10.5 kg/(m·s3), while it shoals about 2.5 m when the wind stress curl strengthens by 1 × 10-7 N/m3.
基金supported by China MOST project (No.2012BAH46B04)
文摘Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck for multi-pattern matching on online compressed network traffic(CNT), this is because malicious and intrusion codes are often embedded into compressed network traffic. In this paper, we propose an online fast and multi-pattern matching algorithm on compressed network traffic(FMMCN). FMMCN employs two types of jumping, i.e. jumping during sliding window and a string jump scanning strategy to skip unnecessary compressed bytes. Moreover, FMMCN has the ability to efficiently process multiple large volume of networks such as HTTP traffic, vehicles traffic, and other Internet-based services. The experimental results show that FMMCN can ignore more than 89.5% of bytes, and its maximum speed reaches 176.470MB/s in a midrange switches device, which is faster than the current fastest algorithm ACCH by almost 73.15 MB/s.
基金Supported by the National Science Foundation of China under Grant Nos. 40575006 and 40830957the National Key Program for Developing Basic Sciences under Grant No. G1998040906
文摘The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.