A class of singularly perturbed semi-linear boundary value problems with discontinuous functions is examined in this article. Using the boundary layer function method, the asymptotic solution of such a problem is give...A class of singularly perturbed semi-linear boundary value problems with discontinuous functions is examined in this article. Using the boundary layer function method, the asymptotic solution of such a problem is given and shown to be uniformly effective. The existence and uniqueness of the solution for the system is also proved. Numerical result is presented as an illustration to the theoretical result.展开更多
In this paper, a kind of singularly perturbed first-order differential equations with integral boundary condition are considered. With the method of boundary layer function and the Banach fixed-point theorem, the unif...In this paper, a kind of singularly perturbed first-order differential equations with integral boundary condition are considered. With the method of boundary layer function and the Banach fixed-point theorem, the uniformly valid asymptotic solution of the original problem is obtained.展开更多
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commens...This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.展开更多
基金Supported by National Natural Science Foundation of China(11071075, 11171113)National Natural Science Foundation of China-subsidized by CAS Knowledge Innovation Project (30921064,90820307)+1 种基金Shang Natural Science Foundation(10ZR1409200)Division of Computational Science,E-institute of Shanghai Jiaotong University(E03004)
文摘A class of singularly perturbed semi-linear boundary value problems with discontinuous functions is examined in this article. Using the boundary layer function method, the asymptotic solution of such a problem is given and shown to be uniformly effective. The existence and uniqueness of the solution for the system is also proved. Numerical result is presented as an illustration to the theoretical result.
基金supported by the National Natural Science Foundation of China (Grant No.10701023)and the E-Institutes of Shanghai Municipal Education Commission (Grant No.E03004)
文摘In this paper, a kind of singularly perturbed first-order differential equations with integral boundary condition are considered. With the method of boundary layer function and the Banach fixed-point theorem, the uniformly valid asymptotic solution of the original problem is obtained.
基金supported by the National Natural Science Foundation of China(60674090)Shandong Natural Science Foundation(ZR2017QF016)
文摘This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.