To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system w...To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system was designed and implemented on the Experimental Advanced Superconducting Tokamak(EAST). This system leverages two symmetric optics for joint plasma imaging. The optical system exhibits a spatial resolution less than 2 mm at the poloidal cross-section, distortion within the field of view below 10%, and relative illumination of 91%.The high-quality images obtained enable clear observation of both the plasma boundary position and the characteristics of components within the vacuum vessel. Following system calibration and coordinate transformation, the image coordinate boundary features are mapped to the tokamak coordinate system. Utilizing this system, the plasma boundary was reconstructed, and the resulting representation showed alignment with the EFIT(Equilibrium Fitting) results. This underscores the system's superior performance in boundary reconstruction applications and provides a diagnostic foundation for boundary shape control based on visible spectral imaging.展开更多
Usually it is generally believed that the Er element forms the Er_(2)Fe_(14)B phase,which will seriously deteriorate the magnetic properties.Distinctly,here we report the balance of corrosion resistance and coercivity...Usually it is generally believed that the Er element forms the Er_(2)Fe_(14)B phase,which will seriously deteriorate the magnetic properties.Distinctly,here we report the balance of corrosion resistance and coercivity in Nd-Fe-B sintered magnets through using simple Er_(30)Cu_(70) additive whose price is much lower than Dy and Tb.By reasonably controlling Er_(30)Cu_(70) addition,the corrosion resistance is improved at the minimum limit of reducing the magnetic properties.Through studying the influence mechanism of Er element,it is found that the main effect of Er elements is to replace the Nd elements at the edge of the main phase grains to form a(Er,Nd)_(2)Fe_(14)B shell with low H_(A),resulting in the reduction of magnetic properties.The improvement of corrosion resistance mainly comes from the more stable Cu element introduced at the grain boundary.At the same time,the target magnets also show different advantages under different heat treatment methods.Above findings may spur progress towards developing the lowcost permanent magnets that rival the commercial Nd-Fe-B counterpart.展开更多
The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estima...The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estimate the ‘logic loophole' of this technique. The finite-width effect and unpredictable errors reduce the technique's reliability, which leads to this loophole. Based on imaging theory, the photos of a virtual camera are simulated by integrating the assumed luminous intensity of plasma. Based on Hommen's theory, the plasma optical boundary is reconstructed from the photos. Comparing the reconstructed boundary with the one assumed, the logic loophole and its two effects are quantitatively estimated. The finite-width effect is related to the equivalent thickness of the luminous layer, which is generally about 2-4 cm but sometimes larger. The level of unpredictable errors is around 0.65 cm. The technique based on Hommen's theory is generally reliable, but finite-width effect and unpredictable errors have to be taken into consideration in some scenarios. The parameters of HL-2M are applied in this work.展开更多
Reconstructing the shape and position of plasma is an important issue in Tokamaks. Equilibrium and fitting(EFIT) code is generally used for plasma boundary reconstruction in some Tokamaks. However, this magnetic met...Reconstructing the shape and position of plasma is an important issue in Tokamaks. Equilibrium and fitting(EFIT) code is generally used for plasma boundary reconstruction in some Tokamaks. However, this magnetic method still has some inevitable disadvantages. In this paper, we present an optical plasma boundary reconstruction algorithm. This method uses EFIT reconstruction results as the standard to create the optimally optical reconstruction. Traditional edge detection methods cannot extract a clear plasma boundary for reconstruction. Based on global contrast, we propose an edge detection algorithm to extract the plasma boundary in the image plane. Illumination in this method is robust. The extracted boundary and the boundary reconstructed by EFIT are fitted by same-order polynomials and the transformation matrix exists. To acquire this matrix without camera calibration, the extracted plasma boundary is transformed from the image plane to the Tokamak poloidal plane by a mathematical model,which is optimally resolved by using least squares to minimize the error between the optically reconstructed result and the EFIT result. Once the transform matrix is acquired, we can optically reconstruct the plasma boundary with only an arbitrary image captured. The error between the method and EFIT is presented and the experimental results of different polynomial orders are discussed.展开更多
A method for the reconstruction of the plasma boundary in the sino-united spherical tokamak (SUNIST) based on the outer plasma magnetic diagnostics is reported. In SUNIST, the magnetic flux loop integral signals wer...A method for the reconstruction of the plasma boundary in the sino-united spherical tokamak (SUNIST) based on the outer plasma magnetic diagnostics is reported. In SUNIST, the magnetic flux loop integral signals were measured recently and the plasma boundary could be reconstructed well with a current filament (CF) model by setting 2 to 8 current filaments. There are three additional filament positional parameters in addition to the filament current to minimize the square root error in the CF model. The plasma configuration obtained with the CF method is consistent with the visible plasma image from the CCD camera. The average difference in the minor radii for the plasma boundary, by applying the CF model and EFIT code, is below 6 mm.展开更多
A new method for plasma boundary reconstruction, based on the toroidal multipolar expansion (TME) scheme, is applied successfully in EAST. TME applies a limited number of toroidal multipolar moments based on toroida...A new method for plasma boundary reconstruction, based on the toroidal multipolar expansion (TME) scheme, is applied successfully in EAST. TME applies a limited number of toroidal multipolar moments based on toroidal coordinates to treat a two-dimensional problem of axisymmetric plasma equilibrium. The plasma boundary reconstructed by TME is consistent with the results by using EFIT. The method is sufficiently reliable and fast for real time shape control.展开更多
A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first ...A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first of all, therelationship between the heat flux and the temperatures of the measurement points inside the ablation material is establishedby the predictive model based on an influence relationship matrix. Meanwhile, the estimation task is formulated as aninverse heat transfer problem (IHTP) with consideration of ablation, which is described by an objective function of thetemperatures at the measurement point. Then, the rolling optimization is used to solve the IHTP to online estimate theunknown heat flux on the ablated boundary. Furthermore, the movement law of the ablated boundary is reconstructedaccording to the estimation of the boundary heat flux. The effects of the temperature measurement errors, the numberof future time steps, and the arrangement of the measurement points on the estimation results are analyzed in numericalexperiments. On the basis of the numerical results, the effectiveness of the presented method is clarified.展开更多
The aim of this paper is to study the notion of the gradient observability on a subregion w of the evolution domain W and also we consider the case where the subregion of interest is a boundary part of the system evol...The aim of this paper is to study the notion of the gradient observability on a subregion w of the evolution domain W and also we consider the case where the subregion of interest is a boundary part of the system evolution domain for the class of semilinear hyperbolic systems. We show, under some hypotheses, that the flux reconstruction is guaranteed by means of the sectorial approach combined with fixed point techniques. This leads to several interesting results which are performed through numerical examples and simulations.展开更多
Abnormal grain growth,a pervasive phenomenon witnessed during the annealing of nanocrystalline metals,precipitates a swift diminution of the distinctive prop-erties inherent to such materials.Historically,conventional...Abnormal grain growth,a pervasive phenomenon witnessed during the annealing of nanocrystalline metals,precipitates a swift diminution of the distinctive prop-erties inherent to such materials.Historically,conventional transmission electron microscopy has struggled to efficiently procure comprehensive five-parameter crystallographic information from a substantial number of grain boundaries in nanocrystalline metals,thus inhibiting a deeper understanding of abnormal grain growth behavior within nanocrystalline materials.In this study,we utilize a high-throughput characterization method-three-dimensional orientation mapping in the TEM(3D-OMiTEM)to characterize the crystallographic five-parameter character of grain boundaries with an area of over 3.4×10^(6)nm^(2)in an abnormally grown nanocrystalline nickel sample.When coupled with existing theoretical simulation results,it is discerned that the grain boundary population shows a relatively large scatter when it is correlated to the calculated grain boundary energy;the grain boundaries of abnormally grown grains exhibit lower grain boundary energy compared to those that have not undergone abnormal growth.Merging highthroughput grain boundary information obtained from three-dimensional orientation mapping data with grain boundary properties derived from high-throughput theoretical calculations following the concept of materials genome engineering will undoubtedly facilitate further advancements in comprehending and discerning the interfacial behaviors of crystalline materials.展开更多
基金supported by the National MCF Energy R&D Program of China (Nos. 2018YFE0302103 and 2018YFE 0302100)National Natural Science Foundation of China (Nos. 12205195 and 11975277)。
文摘To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system was designed and implemented on the Experimental Advanced Superconducting Tokamak(EAST). This system leverages two symmetric optics for joint plasma imaging. The optical system exhibits a spatial resolution less than 2 mm at the poloidal cross-section, distortion within the field of view below 10%, and relative illumination of 91%.The high-quality images obtained enable clear observation of both the plasma boundary position and the characteristics of components within the vacuum vessel. Following system calibration and coordinate transformation, the image coordinate boundary features are mapped to the tokamak coordinate system. Utilizing this system, the plasma boundary was reconstructed, and the resulting representation showed alignment with the EFIT(Equilibrium Fitting) results. This underscores the system's superior performance in boundary reconstruction applications and provides a diagnostic foundation for boundary shape control based on visible spectral imaging.
基金Project supported by the Natural Science Foundation of Guangxi(2021GXNSFDA075009)the National Natural Science Foundation of China(52261004)。
文摘Usually it is generally believed that the Er element forms the Er_(2)Fe_(14)B phase,which will seriously deteriorate the magnetic properties.Distinctly,here we report the balance of corrosion resistance and coercivity in Nd-Fe-B sintered magnets through using simple Er_(30)Cu_(70) additive whose price is much lower than Dy and Tb.By reasonably controlling Er_(30)Cu_(70) addition,the corrosion resistance is improved at the minimum limit of reducing the magnetic properties.Through studying the influence mechanism of Er element,it is found that the main effect of Er elements is to replace the Nd elements at the edge of the main phase grains to form a(Er,Nd)_(2)Fe_(14)B shell with low H_(A),resulting in the reduction of magnetic properties.The improvement of corrosion resistance mainly comes from the more stable Cu element introduced at the grain boundary.At the same time,the target magnets also show different advantages under different heat treatment methods.Above findings may spur progress towards developing the lowcost permanent magnets that rival the commercial Nd-Fe-B counterpart.
基金supported by the Tsinghua University 2021 Doctoral Summer Projectsupported by the National Key R&D Program of China (No. 2018YFE0301102)National Natural Science Foundation of China (Nos. 11875020 and 11875023)。
文摘The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estimate the ‘logic loophole' of this technique. The finite-width effect and unpredictable errors reduce the technique's reliability, which leads to this loophole. Based on imaging theory, the photos of a virtual camera are simulated by integrating the assumed luminous intensity of plasma. Based on Hommen's theory, the plasma optical boundary is reconstructed from the photos. Comparing the reconstructed boundary with the one assumed, the logic loophole and its two effects are quantitatively estimated. The finite-width effect is related to the equivalent thickness of the luminous layer, which is generally about 2-4 cm but sometimes larger. The level of unpredictable errors is around 0.65 cm. The technique based on Hommen's theory is generally reliable, but finite-width effect and unpredictable errors have to be taken into consideration in some scenarios. The parameters of HL-2M are applied in this work.
基金supported by the National Natural Science Foundation of China(Nos.61375049 and 61473253)
文摘Reconstructing the shape and position of plasma is an important issue in Tokamaks. Equilibrium and fitting(EFIT) code is generally used for plasma boundary reconstruction in some Tokamaks. However, this magnetic method still has some inevitable disadvantages. In this paper, we present an optical plasma boundary reconstruction algorithm. This method uses EFIT reconstruction results as the standard to create the optimally optical reconstruction. Traditional edge detection methods cannot extract a clear plasma boundary for reconstruction. Based on global contrast, we propose an edge detection algorithm to extract the plasma boundary in the image plane. Illumination in this method is robust. The extracted boundary and the boundary reconstructed by EFIT are fitted by same-order polynomials and the transformation matrix exists. To acquire this matrix without camera calibration, the extracted plasma boundary is transformed from the image plane to the Tokamak poloidal plane by a mathematical model,which is optimally resolved by using least squares to minimize the error between the optically reconstructed result and the EFIT result. Once the transform matrix is acquired, we can optically reconstruct the plasma boundary with only an arbitrary image captured. The error between the method and EFIT is presented and the experimental results of different polynomial orders are discussed.
基金supported by National Natural Science Foundation of China (Nos.10775177, 10535020)the Major State Basic Research Development Program of China (Program 973) (No.2008CB717804)
文摘A method for the reconstruction of the plasma boundary in the sino-united spherical tokamak (SUNIST) based on the outer plasma magnetic diagnostics is reported. In SUNIST, the magnetic flux loop integral signals were measured recently and the plasma boundary could be reconstructed well with a current filament (CF) model by setting 2 to 8 current filaments. There are three additional filament positional parameters in addition to the filament current to minimize the square root error in the CF model. The plasma configuration obtained with the CF method is consistent with the visible plasma image from the CCD camera. The average difference in the minor radii for the plasma boundary, by applying the CF model and EFIT code, is below 6 mm.
基金supported by the Major State Basic Research Development Program of China (973 program, No. 2009GB103000), National Natural Science Foundation of China (No. 10835009), and the Chinese Academy of Sciences with grant ID of KJCX3.SYW.N4
文摘A new method for plasma boundary reconstruction, based on the toroidal multipolar expansion (TME) scheme, is applied successfully in EAST. TME applies a limited number of toroidal multipolar moments based on toroidal coordinates to treat a two-dimensional problem of axisymmetric plasma equilibrium. The plasma boundary reconstructed by TME is consistent with the results by using EFIT. The method is sufficiently reliable and fast for real time shape control.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51876010 and 51676019).
文摘A model predictive inverse method (MPIM) is presented to estimate the time- and space-dependent heat flux onthe ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first of all, therelationship between the heat flux and the temperatures of the measurement points inside the ablation material is establishedby the predictive model based on an influence relationship matrix. Meanwhile, the estimation task is formulated as aninverse heat transfer problem (IHTP) with consideration of ablation, which is described by an objective function of thetemperatures at the measurement point. Then, the rolling optimization is used to solve the IHTP to online estimate theunknown heat flux on the ablated boundary. Furthermore, the movement law of the ablated boundary is reconstructedaccording to the estimation of the boundary heat flux. The effects of the temperature measurement errors, the numberof future time steps, and the arrangement of the measurement points on the estimation results are analyzed in numericalexperiments. On the basis of the numerical results, the effectiveness of the presented method is clarified.
文摘The aim of this paper is to study the notion of the gradient observability on a subregion w of the evolution domain W and also we consider the case where the subregion of interest is a boundary part of the system evolution domain for the class of semilinear hyperbolic systems. We show, under some hypotheses, that the flux reconstruction is guaranteed by means of the sectorial approach combined with fixed point techniques. This leads to several interesting results which are performed through numerical examples and simulations.
基金the National Key Research and Development Program of China(2021YFB3702101)GLW is grateful for the support from the National Natural Science Foundation of China(No.52071038)WQZ thanks the support from the National Natural Science Foundation of China(No.52301008).
文摘Abnormal grain growth,a pervasive phenomenon witnessed during the annealing of nanocrystalline metals,precipitates a swift diminution of the distinctive prop-erties inherent to such materials.Historically,conventional transmission electron microscopy has struggled to efficiently procure comprehensive five-parameter crystallographic information from a substantial number of grain boundaries in nanocrystalline metals,thus inhibiting a deeper understanding of abnormal grain growth behavior within nanocrystalline materials.In this study,we utilize a high-throughput characterization method-three-dimensional orientation mapping in the TEM(3D-OMiTEM)to characterize the crystallographic five-parameter character of grain boundaries with an area of over 3.4×10^(6)nm^(2)in an abnormally grown nanocrystalline nickel sample.When coupled with existing theoretical simulation results,it is discerned that the grain boundary population shows a relatively large scatter when it is correlated to the calculated grain boundary energy;the grain boundaries of abnormally grown grains exhibit lower grain boundary energy compared to those that have not undergone abnormal growth.Merging highthroughput grain boundary information obtained from three-dimensional orientation mapping data with grain boundary properties derived from high-throughput theoretical calculations following the concept of materials genome engineering will undoubtedly facilitate further advancements in comprehending and discerning the interfacial behaviors of crystalline materials.