This paper builds a binary tree for the target based on the bounding volume hierarchy technology,thereby achieving strict acceleration of the shadow judgment process and reducing the computational complexity from the ...This paper builds a binary tree for the target based on the bounding volume hierarchy technology,thereby achieving strict acceleration of the shadow judgment process and reducing the computational complexity from the original O(N^(3))to O(N^(2)logN).Numerical results show that the proposed method is more efficient than the traditional method.It is verified in multiple examples that the proposed method can complete the convergence of the current.Moreover,the proposed method avoids the error of judging the lit-shadow relationship based on the normal vector,which is beneficial to current iteration and convergence.Compared with the brute force method,the current method can improve the simulation efficiency by 2 orders of magnitude.The proposed method is more suitable for scattering problems in electrically large cavities and complex scenarios.展开更多
Visualization of simulated crop growth and development is of significant interest to crop research and production. This study aims to address the phenomenon of organs cross-drawing by developing a method of collision ...Visualization of simulated crop growth and development is of significant interest to crop research and production. This study aims to address the phenomenon of organs cross-drawing by developing a method of collision detection for improving vivid 3D visualizations of virtual wheat crops. First, the triangular data of leaves are generated with the tessellation of non-uniform rational B-splines surfaces. Second, the bounding volumes(BVs) and bounding volume hierarchies(BVHs) of leaves are constructed based on the leaf morphological characteristics and the collision detection of two leaves are performed using the Separating Axis Theorem. Third, the detecting effect of the above method is compared with the methods of traditional BVHs, Axis-Aligned Bounding Box(AABB) tree, and Oriented Bounding Box(OBB) tree. Finally, the BVs of other organs(ear, stem, and leaf sheath) in virtual wheat plant are constructed based on their geometric morphology, and the collision detections are conducted at the organ, individual and population scales. The results indicate that the collision detection method developed in this study can accurately detect collisions between organs, especially at the plant canopy level with high collision frequency. This collision detection-based virtual crop visualization method could reduce the phenomenon of organs cross-drawing effectively and enhance the reality of visualizations.展开更多
Ground-penetrating radar and trenching studies of a barrier spit on the north shore of Huangqihai Lake were made,that reveal important implications for the coastal washover barrier boundary hierarchy and interpretatio...Ground-penetrating radar and trenching studies of a barrier spit on the north shore of Huangqihai Lake were made,that reveal important implications for the coastal washover barrier boundary hierarchy and interpretations of this depositional record.A four-fold hierarchy bounding-surface model,representing different levels of impact and genesis,is defined.Each level of the hierarchy is enclosed by a distinct kind of surface characterized by different ground-penetrating radar reflection features,sedimentary characteristics(color,grain size,sorting,rounding and sedimentary structures) and origin.We suggest that this hierarchical model can be applied to any coastal washover barrier deposits.展开更多
We present a novel algorithm BADF(Bounding Volume Hierarchy Based Adaptive Distance Fields)for accelerating the construction of ADFs(adaptive distance fields)of rigid and deformable models on graphics processing units...We present a novel algorithm BADF(Bounding Volume Hierarchy Based Adaptive Distance Fields)for accelerating the construction of ADFs(adaptive distance fields)of rigid and deformable models on graphics processing units.Our approach is based on constructing a bounding volume hierarchy(BVH)and we use that hierarchy to generate an octree-based ADF.We exploit the coherence between successive frames and sort the grid points of the octree to accelerate the computation.Our approach is applicable to rigid and deformable models.Our GPU-based(graphics processing unit based)algorithm is about 20x--50x faster than current mainstream central processing unit based algorithms.Our BADF algorithm can construct the distance fields for deformable models with 60k triangles at interactive rates on an NVIDIA GTX GeForce 1060.Moreover,we observe 3x speedup over prior GPU-based ADF algorithms.展开更多
基金the National Natural Science Foundation of China under Grants No.62231021 and No.92373201.
文摘This paper builds a binary tree for the target based on the bounding volume hierarchy technology,thereby achieving strict acceleration of the shadow judgment process and reducing the computational complexity from the original O(N^(3))to O(N^(2)logN).Numerical results show that the proposed method is more efficient than the traditional method.It is verified in multiple examples that the proposed method can complete the convergence of the current.Moreover,the proposed method avoids the error of judging the lit-shadow relationship based on the normal vector,which is beneficial to current iteration and convergence.Compared with the brute force method,the current method can improve the simulation efficiency by 2 orders of magnitude.The proposed method is more suitable for scattering problems in electrically large cavities and complex scenarios.
基金supported by the National High-Tech Research and Development Program of China (2013AA102404)the National Science Fund for Distinguished Young Scholars, China (31725020)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD),Chinathe 111 Project, China (B16026)
文摘Visualization of simulated crop growth and development is of significant interest to crop research and production. This study aims to address the phenomenon of organs cross-drawing by developing a method of collision detection for improving vivid 3D visualizations of virtual wheat crops. First, the triangular data of leaves are generated with the tessellation of non-uniform rational B-splines surfaces. Second, the bounding volumes(BVs) and bounding volume hierarchies(BVHs) of leaves are constructed based on the leaf morphological characteristics and the collision detection of two leaves are performed using the Separating Axis Theorem. Third, the detecting effect of the above method is compared with the methods of traditional BVHs, Axis-Aligned Bounding Box(AABB) tree, and Oriented Bounding Box(OBB) tree. Finally, the BVs of other organs(ear, stem, and leaf sheath) in virtual wheat plant are constructed based on their geometric morphology, and the collision detections are conducted at the organ, individual and population scales. The results indicate that the collision detection method developed in this study can accurately detect collisions between organs, especially at the plant canopy level with high collision frequency. This collision detection-based virtual crop visualization method could reduce the phenomenon of organs cross-drawing effectively and enhance the reality of visualizations.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120022130002)the State Scholarship Fund from the China Scholarship Council(No.201406400030)
文摘Ground-penetrating radar and trenching studies of a barrier spit on the north shore of Huangqihai Lake were made,that reveal important implications for the coastal washover barrier boundary hierarchy and interpretations of this depositional record.A four-fold hierarchy bounding-surface model,representing different levels of impact and genesis,is defined.Each level of the hierarchy is enclosed by a distinct kind of surface characterized by different ground-penetrating radar reflection features,sedimentary characteristics(color,grain size,sorting,rounding and sedimentary structures) and origin.We suggest that this hierarchical model can be applied to any coastal washover barrier deposits.
基金the National Key Research and Development Program of China under Grant No.2018AAA0102703the National Natural Science Foundation of China under Grant Nos.61972341,61972342,and 61732015.
文摘We present a novel algorithm BADF(Bounding Volume Hierarchy Based Adaptive Distance Fields)for accelerating the construction of ADFs(adaptive distance fields)of rigid and deformable models on graphics processing units.Our approach is based on constructing a bounding volume hierarchy(BVH)and we use that hierarchy to generate an octree-based ADF.We exploit the coherence between successive frames and sort the grid points of the octree to accelerate the computation.Our approach is applicable to rigid and deformable models.Our GPU-based(graphics processing unit based)algorithm is about 20x--50x faster than current mainstream central processing unit based algorithms.Our BADF algorithm can construct the distance fields for deformable models with 60k triangles at interactive rates on an NVIDIA GTX GeForce 1060.Moreover,we observe 3x speedup over prior GPU-based ADF algorithms.