期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
一类4阶发展方程的低正则性解
1
作者 王守印 尹景本 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期12-14,共3页
考虑了一类具有奇异积分项的4阶发展方程,在Bourgain空间中,利用双线性估计,得到了这类方程的低正则局部解的存在性.最终结果降低了初值的正则性要求,扩大了正则性指标s的范围.
关键词 双线性估计 低正则性 bourgain空间 BOUSSINESQ方程
下载PDF
带非局部扰动项的KdV方程的临界正则性
2
作者 王宏伟 刘玉军 《四川师范大学学报(自然科学版)》 CAS 北大核心 2017年第5期639-643,共5页
研究一类带非局部扰动项的KdV方程的Cauchy问题.通过构造一类新的Bourgain空间,并在这个空间中得到非线性项的双线性估计,结合压缩映象原理,在临界空间H^(-3/2)(R)中证明这类方程局部解的适定性.
关键词 双线性估计 bourgain空间 临界正则性
下载PDF
SHARP WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR THE HIGHER-ORDER DISPERSIVE EQUATION
3
作者 蒋敏杰 闫威 张贻民 《Acta Mathematica Scientia》 SCIE CSCD 2017年第4期1061-1082,共22页
This current paper is devoted to the Cauchy problem for higher order dispersive equation ut+δx^2n+1u=δx(uδx^nu)+δx^n-1(ux^2), n ≥ 2, n ∈ N^+. Ut By using Besov-type spaces, we prove that the associated ... This current paper is devoted to the Cauchy problem for higher order dispersive equation ut+δx^2n+1u=δx(uδx^nu)+δx^n-1(ux^2), n ≥ 2, n ∈ N^+. Ut By using Besov-type spaces, we prove that the associated problem is locally well-posed in H(-n/2+3/4,-1/2n). The new ingredient is that we establish some new dyadic bilinear estimates. When n is even, we also prove that the associated equation is ill-posed in H^(s,a)(R) with s〈-n/2+3/4 and all a∈R. 展开更多
关键词 Cauchy problem sharp well-posedness modified bourgain spaces
下载PDF
一类非线性六阶波动方程的几乎守恒律
4
作者 王宏伟 《安徽师范大学学报(自然科学版)》 CAS 2016年第3期226-229,236,共5页
研究了一类非线性六阶波动方程的Chaucy问题,通过引入一个修正的能量泛函,借助Airy方程的Strichartz估计,在Bourgain空间中证明了这类方程的几乎守恒律.
关键词 修正的能量泛涵 几乎守恒律 bourgain空间
下载PDF
带阻尼的随机浅水波方程的随机吸引子
5
作者 陈涌 《数学年刊(A辑)》 CSCD 北大核心 2016年第2期211-226,共16页
研究了在H^1(R)中带阻尼的随机浅水波方程的随机吸引子的存在性.主要工具是Fourier限制范数方法以及将解分解为衰减部分与正则部分.
关键词 随机浅水波方程 随机吸引子 bourgain空间
下载PDF
二维Boussinesq方程的几乎守恒律
6
作者 王守印 王宏伟 《新乡学院学报》 2011年第1期6-8,共3页
在Bourgain空间中,利用I-method,得到了二维Boussinesq方程的几乎守恒律。
关键词 几乎守恒律 bourgain空间 I-METHOD BOUSSINESQ方程
下载PDF
一类弱阻尼KdV方程的渐近光滑全局吸引子 被引量:2
7
作者 张文彬 田立新 彭德军 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2005年第B12期38-41,50,共5页
研究带粘性项的受迫弱阻尼KdV方程,运用能量方程和正交分解相结合的方法,得到了Bourgain空间下解的正则性,结果表明在L2(R)空间中存在渐近光滑的全局吸引子.
关键词 弱阻尼KdV 全局吸引子 bourgain空间 能量方程
下载PDF
Bourgain空间X^(s,b)及其在KdV型方程中的应用(英文)
8
作者 谌稳固 《数学进展》 CSCD 北大核心 2011年第6期641-654,共14页
本文总结了使用Bourgain空间技术研究KdV型方程初值问题的局部适定性和整体适定性方面所取得的结果.
关键词 局部适定性 整体适定性 bourgain空间 色散方程 CAUCHY问题
原文传递
Variations on a Proof of a Borderline Bourgain-Brezis Sobolev Embedding Theorem
9
作者 Sagun CHANILLO Jean VAN SCHAFTINGEN Po-Lam YUNG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第1期235-252,共18页
This paper offers a variant of a proof of a borderline Bourgain-Brezis Sobolev embedding theorem on R^n. The authors use this idea to extend the result to real hyperbolic spaces H^n.
关键词 bourgain-Brezis inequalities Divergence-free vector fields Sobolev inequalities Real hyperbolic space
原文传递
Global well-posedness of the fractional Klein-Gordon-Schr¨odinger system with rough initial data 被引量:2
10
作者 HUANG ChunYan GUO BoLing +1 位作者 HUANG DaiWen LI QiaoXin 《Science China Mathematics》 SCIE CSCD 2016年第7期1345-1366,共22页
We investigate the low regularity local and global well-posedness of the Cauchy problem for the coupled Klein-Gordon-Schr¨odinger system with fractional Laplacian in the Schr¨odinger equation in R^(1+1). ... We investigate the low regularity local and global well-posedness of the Cauchy problem for the coupled Klein-Gordon-Schr¨odinger system with fractional Laplacian in the Schr¨odinger equation in R^(1+1). We use Bourgain space method to study this problem and prove that this system is locally well-posed for Schr¨odinger data in H^(s_1) and wave data in H^(s_2) × H^(s_2-1)for 3/4- α &lt; s_1≤0 and-1/2 &lt; s_2 &lt; 3/2, where α is the fractional power of Laplacian which satisfies 3/4 &lt; α≤1. Based on this local well-posedness result, we also obtain the global well-posedness of this system for s_1 = 0 and-1/2 &lt; s_2 &lt; 1/2 by using the conservation law for the L^2 norm of u. 展开更多
关键词 Klein-Gordon-Schr¨odinger system fractional Laplacian bourgain space low regularity
原文传递
Global Well-posedness for the Fifth-order mKdV Equation
11
作者 Xin Jun GAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第6期1015-1027,共13页
We prove the global well-posedness for the Cauchy problem of fifth-order modified Korteweg-de Vries equation in Sobolev spaces H^3(R) for s〉-3/22.The main approach is the "I-method" together with the multilinear ... We prove the global well-posedness for the Cauchy problem of fifth-order modified Korteweg-de Vries equation in Sobolev spaces H^3(R) for s〉-3/22.The main approach is the "I-method" together with the multilinear multiplier analysis. 展开更多
关键词 Fifth-order mKdV equation bourgain space global well-posedness I-METHOD
原文传递
Nonlinear Schrdinger equations on compact Zoll manifolds with odd growth
12
作者 YANG JianWei 《Science China Mathematics》 SCIE CSCD 2015年第5期1023-1046,共24页
We study nonlinear Schr¨odinger equations on Zoll manifolds with nonlinear growth of the odd order.It is proved that local uniform well-posedness are valid in the Hs-subcritical setting according to the scaling i... We study nonlinear Schr¨odinger equations on Zoll manifolds with nonlinear growth of the odd order.It is proved that local uniform well-posedness are valid in the Hs-subcritical setting according to the scaling invariance, apart from the cubic growth in dimension two. This extends the results by Burq et al.(2005) to higher dimensions with general nonlinearities. 展开更多
关键词 Schrodinger equations Zoll manifolds bourgain space
原文传递
Local regularity properties for ID mixed nonlinear Schrodinger equations on half-line
13
作者 Boling GUO Jun WU 《Frontiers of Mathematics in China》 SCIE CSCD 2020年第6期1121-1142,共22页
The main purpose of this paper is to consider the initial-boundary value problem for the 1D mixed nonlinear Schrodinger equation ut=iαu_(xx)+βu^(2)u_(x)+γ|u|^(2)u_(x)+i|u|^(2)u on the half-line with inhomogeneous b... The main purpose of this paper is to consider the initial-boundary value problem for the 1D mixed nonlinear Schrodinger equation ut=iαu_(xx)+βu^(2)u_(x)+γ|u|^(2)u_(x)+i|u|^(2)u on the half-line with inhomogeneous boundary condition.We combine Laplace transform method with restricted norm method to prove the local well-posedness and continuous dependence on initial and boundary data in low regularity Sobolev spaces.Moreover,we show that the nonlinear part of the solution on the half-line is smoother than the initial data. 展开更多
关键词 Mixed nonlinear Schrodinger(MNLS)equations initial-boundary value problem(IBVP) bourgain spaces local well-posedness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部