A biologically active antibacterial reagent, 2-amino-6-hydroxy-4-(4-N, N-dimethylaminophenyl)-pyr- imidine-5-carbonitrile (AHDMAPPC), was synthesized. It was employed to investigate the binding in- teraction with ...A biologically active antibacterial reagent, 2-amino-6-hydroxy-4-(4-N, N-dimethylaminophenyl)-pyr- imidine-5-carbonitrile (AHDMAPPC), was synthesized. It was employed to investigate the binding in- teraction with the bovine serum albumin (BSA) in detail using different spectroscopic methods. It ex- hibited antibacterial activity against Escherichia cali and Staphylococcus aureus which are common food poisoning bacteria. The experimental results showed that the fluorescence quenching of model carrier protein BSA by AHDMAPPC was due to static quenching. The site binding constants and number of binding sites (n ≈ 1) were determined at three different temperatures based on fluorescence quenching results. The thermodynamic parameters, enthalpy change (AH), free energy (AG) and entropy change (AS) for the reaction were calculated to be 15.15 kJ/mol, -36.11 kJ/mol and 51.26J/mol K according to van't Hoff equation, respectively. The results indicated that the reaction was an endothermic and spontaneous process, and hydrophobic interactions played a major role in the binding between drug and BSA. The distance between donor and acceptor is 2.79 nm according to Forster's theory. The alterations of the BSA secondary structure in the presence of AHDMAPPC were confirmed by UV-visible, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence spectra. All these results in- dicated that AHDMAPPC can bind to BSA and be effectively transported and eliminated in the body. It can be a useful guideline for further drug design.展开更多
In this work, the capillary electrophoresis mobility shift assay (CEMSA) was first adopted to study the interaction of protein with quantum dots (QDs). In this study, bovine serum albumin (BSA) and CdTe QDs were...In this work, the capillary electrophoresis mobility shift assay (CEMSA) was first adopted to study the interaction of protein with quantum dots (QDs). In this study, bovine serum albumin (BSA) and CdTe QDs were used as model samples. We observed that BSA was facilely adsorbed to CdTe QDs surface, and the QD-BSA complex was formed by a 1:1 stoichiometric ratio. A value of 2.17 4-0.27 × 10^6 mol^-1 L^-1 (at 25 ℃) for the association constant was obtained by CEMSA.展开更多
The thioglycollic acid(TGA) as a capping agent, CdTe/TGA quantum dots(QDs) with excellent properties were synthesized under microwave irradiation. The TGA/Cd/Te molar ratios, reaction time, temperature and p H are...The thioglycollic acid(TGA) as a capping agent, CdTe/TGA quantum dots(QDs) with excellent properties were synthesized under microwave irradiation. The TGA/Cd/Te molar ratios, reaction time, temperature and p H are the crucial factors for properties of QDs. The QDs were characterized by UVvis absorption and fluorescence spectra, transmission electron microscopy and Fourier transform infrared spectroscopy. The experimental results show that when the p H value is 11.5 and molar ratio of TGA:Cd:Te is 1.2:1:0.4 at 100 ℃ heating for 15 min, the resulted QDs exhibit a high fluorescence quantum yield of 78%. The fluorescence full width at half maximum(FHMW) of QDs is around 23 nm. The products are spherical with average size of 3-5 nm. There is a strong coordination effect between TGA and Cd2+. Moreover, the results of interaction between as-made QDs and bovine serum albumin(BSA) suggest that the QDs-BSA binding reaction is a static quenching. The negative values of free energy(△G〈0) suggest that the binding process is spontaneous, △H〈0 and △S〈0 show that hydrogen bonds and van der Waals interactions play a major role in the binding reaction between QDs and BSA.展开更多
The interaction of CdSe quantum dots (QDs) with bovine serum albumin (BSA) has been investigated with ultraviolet visible absorption spectroscopy (UVAS). It was found that the absorption intensity of CdSe QDs si...The interaction of CdSe quantum dots (QDs) with bovine serum albumin (BSA) has been investigated with ultraviolet visible absorption spectroscopy (UVAS). It was found that the absorption intensity of CdSe QDs significantly decreased after adding BSA solution, showing that CdSe QDs were bonded to BSA. The binding molar ratio was 1:1 and the binding constant was 9.7 × 10^6 L mol^-1.展开更多
The interaction between clarithromycin (CAM) and bovine serum albumin (BSA) was investigated using linear-sweep voltammetry in pH 7.4 phosphate buffer solution where CAM caused two irreversible reduction waves P2 and ...The interaction between clarithromycin (CAM) and bovine serum albumin (BSA) was investigated using linear-sweep voltammetry in pH 7.4 phosphate buffer solution where CAM caused two irreversible reduction waves P2 and P3 on mercury electrode. The study showed that the formation constant and formation ratio for the interaction between CAM and BSA were 1.51 × 10(12) and 3:1 for P2, 4.53 × 10(5) and 1:1 for P3, respectively. The ion strength enhanced the hydrophobic interaction between CAM and BSA.展开更多
[Objective]The aim was to study the interaction characteristic of bovine serum albumin (BSA) and carbofuran. [ Method]With synchronous fluorescence spectrometry adopted, the interaction of carbofuran and BSA in Tris...[Objective]The aim was to study the interaction characteristic of bovine serum albumin (BSA) and carbofuran. [ Method]With synchronous fluorescence spectrometry adopted, the interaction of carbofuran and BSA in Tris-HCI buffer system (pH 7.40) was investigated. The binding constants at different temperatures were calculated and the interaction types between carbofuran and BSA were discussed. [ Result] Under normal physiological conditions, higher quenching effect of carbofuran on BSA was electrostatic interaction. The changes of different drug concentrations and temperature proved a static quenching of carbofuran with BSA. The binding constants (KSV) at 25 ℃, 37 ℃ and 50 ℃ were 1.17 × 10^4, 1.07 × 10^4 and 0. 99 × 10^4 L/mol respectively with ratio of carbofuran and BSA at 1 : 1. [ Conclusion ] The research is of guiding significance for learning transport and metabolism of carbofuran at molecular level.展开更多
The interaction between bovine serum albumin (BSA) and the anionic 1.2-dipalmitoyl-snglycero- 3-(phospho-rac-(1-glycerol)) (sodium salt) (DPPG) phospholipid at different subphase pH values was investigated a...The interaction between bovine serum albumin (BSA) and the anionic 1.2-dipalmitoyl-snglycero- 3-(phospho-rac-(1-glycerol)) (sodium salt) (DPPG) phospholipid at different subphase pH values was investigated at air-water interface through surface pressure measurements and atomic force microscopy (AFM) observation. By analyzing surface pressure-mean molecular area (π-A) isotherms, the limiting molecular area in the closed packing state-the concentration of BSA (Alim-[BSA]) curves, the compressibility coefficient-surface pressure (CS-1-π) curves and the difference value of mean molecular area-the concentration of BSA (ΔA-[BSA]) curves, we obtained that the mean molecular area of DPPG monolayer became much larger when the concentration of BSA in the subphase increased at pH=3 and 5. But the isotherms had no significant change at different amount of BSA at pH=10. In addition, the amount of BSA molecules adsorbed onto the lipid monolayer reached a threshold value when [BSA]〉5×10-8 mol/L for all pHs. From the surface pressure-time (π-t) data, we obtained that desorption and adsorption processes occurred at pH=3, however, there was only desorption process occurring at pH=5 and 10. These results showed that the interaction mechanism between DPPG and BSA molecules was affected by the pH of subphase. BSA molecules were adsorbed onto the DPPG monolayers mainly through the hydrophobic interaction at pH=3 and 5, and the strength of hydrophobic interaction at pH=3 was stronger than the case of pH=5. At pH=10, a weaker hydrophobic interaction and a stronger electrostatic repulsion existed between DPPG and BSA molecules. AFM images revealed that the pH of subphase and [BSA] could affect the morphology features of the monolayers, which was consistent with these curves. The study provides an important experimental basis and theoretical support to understand the interaction between lipid and BSA at the air-water interface.展开更多
Epicatechin(EC)was used in this study to antagonize the cognitive dysfunction caused by lead(Pb)exposure in mice.Eight-week-old male Kunming mice were treated with PbCl_(2)(20 mg/kg)and/or EC(50 mg/kg)by gavage admini...Epicatechin(EC)was used in this study to antagonize the cognitive dysfunction caused by lead(Pb)exposure in mice.Eight-week-old male Kunming mice were treated with PbCl_(2)(20 mg/kg)and/or EC(50 mg/kg)by gavage administration for 4 weeks.Morris water maze test showed that EC could improve memory dysfunction induced by Pb.EC antagonized Ca^(2+)overload,activated Nrf2 signaling pathway and reduced the accumulation of Pb in the brain and serum,which suggested that EC might alter Pb distribution in mice.In vitro,spectroscopic analysis,potentiometric titration and docking studies were applied to inquiry into the interaction between bovine serum albumin(BSA)and Pb^(2+)in presence or absence of EC.EC was proved to chelate Pb^(2+)and reduced the interaction between BSA and Pb^(2+).In summary,EC might protect Pb-induced cognitive impairment by activating Nrf2 signaling pathway,and suppressing Pb accumulation via interference on the binding of Pb to albumin.展开更多
We previously studied the mechanism underlying the adsorption of oral bacteria on the surfaces of dental prosthetic materials such as ceramics and resins in vitro. The aim of the present study was to examine bovine se...We previously studied the mechanism underlying the adsorption of oral bacteria on the surfaces of dental prosthetic materials such as ceramics and resins in vitro. The aim of the present study was to examine bovine serum albumin (BSA) adsorption on crown composite resin surfaces by means of zeta potential. We measured the zeta potentials of resins alone, BSA alone, and resins after BSA adsorption. Eight resins were pulverized into powders (300 - 1000 nm). All experiments were conducted in 10 mM sodium chloride solution (pH 6.5). BSA was dissolved in 10 mM NaCl with a concentration of 2.0 × 10-5 mol/l. An adsorption assay was performed for one hour at 37°C under continuous rotation (6 rpm). The zeta potentials of both resins and BSA were negative, with BSA itself less negative than the resins themselves as an absolute value (p < 0.0001). The zeta potentials of seven resin surfaces after BSA adsorption were significantly less negative than were those of the resins without BSA adsorption (p < 0.0001). Eight resins were divided into two classes based on the size of the surface potential difference between each resin and the BSA. The difference in surface potential between the resins and the BSA were small, leading to the theory that particles with identical charges repulse each other, and the amounts of adsorbed BSA on these resins might be less. On the other, when the differences between the other resins and BSA are large, so that the repulsive force between two nonidentical particles becomes zero and an attractive force might be generated, then more BSA might be adsorbed on those resins. Therefore, the zeta potentials were affected by BSA adsorption and became less negative. These results suggested that electrostatic interactions play an important role in the adsorption of BSA on resin surfaces.展开更多
The binding mechanism of the interactions of halide ions (F–, Br– and I–) with bovine serum albumin (BSA) and hemoglobin (Hb) were studied at different temperatures, by using ion-selective electrodes. The experimen...The binding mechanism of the interactions of halide ions (F–, Br– and I–) with bovine serum albumin (BSA) and hemoglobin (Hb) were studied at different temperatures, by using ion-selective electrodes. The experimental data were treated according to Klotz equation, and the number of binding sites and the binding constants were determined. The results show that the binding sites of F– on protein molecules are more than those of Br– and I–. Additionally, the number of the binding sites for halide ions on protein molecules increases with increasing temperature. This study also indicates that the binding constants for the interactions of halide ions with proteins gradually decrease as the size of halide ions and temperature increases. These behaviors were reasonably interpreted with the structural and thermodynamic factors. The thermodynamic functions at different temperatures were calculated with thermodynamic equations, and the enthalpy change for the interactions were also determined by isothermal titration calorimetry (ITC) at 298.15 K, which indicate that the interactions of halide ions with proteins are mainly electrostatic interaction.展开更多
Using L-glutathione(GSH) as a capping agent,Zn Se/GSH quantum dots(QDs) were prepared under microwave irradiation and irradiated under dark, ultraviolet light and incandescent light, respectively. The properties and i...Using L-glutathione(GSH) as a capping agent,Zn Se/GSH quantum dots(QDs) were prepared under microwave irradiation and irradiated under dark, ultraviolet light and incandescent light, respectively. The properties and interaction of different lights irradiated ZnSe/GSH QDs and bovine serum albumin(BSA) were studied systematically. The fluorescence(FL) spectra results reveal that the quenching mechanism are all the static quenching in nature. The quenching constant(Ksv) and binding constant(K) value of different irradiated Zn Se/GSH QDs and BSA all increased with the change of light types from dark to incandescent light and UV light. The number of binding site(n) is close to 1 at different temperatures. The lighting types influence the enthalpy and entropy changes. The Fourier transform infrared(FTIR) spectra indicate that the light induced GSH ligand will facilitate photocatalytic oxidation on the surface of ZnSe/GSH QDs. The circular dichroism(CD)results show that the α-helicity content of BSA decreases from 60.34%, 59.31%, to 58.79% under UV lighting,incandescent lighting and dark conditions. The interaction results of different lights illuminated ZnSe/GSH QDs with BSA by CD spectra method matches well with that by FL and FTIR spectra. That is, the interaction of ZnSe/GSH QDs and BSA from strong to weak is UV light, incandescent light and dark in sequence.展开更多
In this study,voltammetric and spectroscopic investigation of the interaction between Janus Green B(JGB) and bovine serum albumin(BSA) was reported.The interaction was observed at Britton-Robinson buffer(pH 7.0)...In this study,voltammetric and spectroscopic investigation of the interaction between Janus Green B(JGB) and bovine serum albumin(BSA) was reported.The interaction was observed at Britton-Robinson buffer(pH 7.0).When JGB was added to solution containing BSA,the peak currents of BSA decrease with the increasing of JGB concentrations which is due to the interaction of JGB and BSA.The binding constant of JGB with BSA was obtained by voltammetric data.Also,this interaction was supported by means of UV-vis spectroscopic measurements.The UV-vis absorption spectra of JGB in the presence of BSA decrease with the increasing of BSA concentrations.展开更多
Three kinds of stearic acid(SA)-modified Bletilla striata polysaccharides(BSPs-SA) conjugates with different degrees of substitution(DS) values of SA moiety were synthesized. The impacts of the DS values on the ...Three kinds of stearic acid(SA)-modified Bletilla striata polysaccharides(BSPs-SA) conjugates with different degrees of substitution(DS) values of SA moiety were synthesized. The impacts of the DS values on the properties of BSPs-SA self-aggregated nanoparticles were determined. The interactions between bovine serum albumin(BSA) and the BSPs-SA nanoparticles were characterized using spectroscopic observations. The cytotoxicity was measured through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) method. The critical aggregation concentration and the average particle sizes reduced from 16.81 μg/mL to 3,09 μg/mL and 192.70 nm to 125.29 nm when the DS values of SA segment increased from 4.98% to 12.94%, respectively. The cumulative release percentage of docetaxel in BSPs-SA nanoparticles decreased whereas encapsulation efficiency and loading capacity increased along with the DS increase of SA moiety. The fluorescence and ultraviolet results demonstrated that the conformation of BSA did not show significant change after incubating with BSPs-SA nanoparticles.Besides, the mass ratio of BSA/BSPs-SA affected their affinity intensity. The inhibition capability of cell proliferation of docetaxel-loaded BSPs-SA nanoparticles against 4 T1 was superior to that of Duopafei;.BSPs-SA nanoparticles may become a promising nanocarrier for anticancer drugs by adjusting the DS values of the hydrophobic SA groups.展开更多
Potassium dehydroandrographolide succinate (DAS-K) has antibacterial and antiviral effects. It has been used widely for the treatment of virus pneumonia, malaria and respiratory infections. In this work, a novel flo...Potassium dehydroandrographolide succinate (DAS-K) has antibacterial and antiviral effects. It has been used widely for the treatment of virus pneumonia, malaria and respiratory infections. In this work, a novel flow-injection chemiluminescence (CL) method for the determination of DAS-K was proposed. The method is based on the reaction between DAS-K and hexacyanoferrate(III) in alkaline solution to give weak CL signal, which is enhanced by rhodamine B. The experimental conditions for the CL reaction were optimized and the possible reaction mechanism was discussed. Under the optimum conditions, the concentration of DAS-K is proportional to the CL intensity in the range of 0.1-80 μmol·L^-1 with a detection limit of 0.05 μmol·L^-1. The interaction of the DAS-K with bovine serum albumin by on-line ultrafiltration and flow-injection chemiluminescence was studied. The concentrations of unbound DAS-K from ultra filter tube were determined by the flow-injection CL method. The binding parameters were estimated by the Scatchard plot and Klotz plot. The proposed system proved that FIA-CL coupled with on-line ultrafiltration sampling was a fast and simple technique for the study of drug-protein interaction.展开更多
Bovine serum albumin(BSA) was utilized to assemble with the binary complexes of poly(vinylpyrrolidone)-graft-poly(2- dimethylaminoethyl methacrylate)(PVP-g-PDMAEMA)/DNA formed by layer-by-layer electrostatic i...Bovine serum albumin(BSA) was utilized to assemble with the binary complexes of poly(vinylpyrrolidone)-graft-poly(2- dimethylaminoethyl methacrylate)(PVP-g-PDMAEMA)/DNA formed by layer-by-layer electrostatic interactions to screen the residual surface positive charges of complexes.The coating of BSA was able to decrease the zeta potential of binary complexes nearly to electroneutrality without interfering with DNA condensation ability.The ternary complexes of BSA/PVP-g-PDMAEMA/ DNA demonstrated lower cytotoxicity compared with the binary complexes and also maintained high gene transfection efficiency in HepG2 cells.展开更多
基金receiving a fellowship from UGCNew Delhi[University Grant Commission,the XIth plan(Faculty Improvement Programme)]DST and UGC for providing funds to the department under FIST and SAP programme
文摘A biologically active antibacterial reagent, 2-amino-6-hydroxy-4-(4-N, N-dimethylaminophenyl)-pyr- imidine-5-carbonitrile (AHDMAPPC), was synthesized. It was employed to investigate the binding in- teraction with the bovine serum albumin (BSA) in detail using different spectroscopic methods. It ex- hibited antibacterial activity against Escherichia cali and Staphylococcus aureus which are common food poisoning bacteria. The experimental results showed that the fluorescence quenching of model carrier protein BSA by AHDMAPPC was due to static quenching. The site binding constants and number of binding sites (n ≈ 1) were determined at three different temperatures based on fluorescence quenching results. The thermodynamic parameters, enthalpy change (AH), free energy (AG) and entropy change (AS) for the reaction were calculated to be 15.15 kJ/mol, -36.11 kJ/mol and 51.26J/mol K according to van't Hoff equation, respectively. The results indicated that the reaction was an endothermic and spontaneous process, and hydrophobic interactions played a major role in the binding between drug and BSA. The distance between donor and acceptor is 2.79 nm according to Forster's theory. The alterations of the BSA secondary structure in the presence of AHDMAPPC were confirmed by UV-visible, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence spectra. All these results in- dicated that AHDMAPPC can bind to BSA and be effectively transported and eliminated in the body. It can be a useful guideline for further drug design.
基金This work was financially supported by the National Natural Science Foundation of China (No.20675052, 20727005);National High-Tech R&D Program (No.2006AA03Z324).
文摘In this work, the capillary electrophoresis mobility shift assay (CEMSA) was first adopted to study the interaction of protein with quantum dots (QDs). In this study, bovine serum albumin (BSA) and CdTe QDs were used as model samples. We observed that BSA was facilely adsorbed to CdTe QDs surface, and the QD-BSA complex was formed by a 1:1 stoichiometric ratio. A value of 2.17 4-0.27 × 10^6 mol^-1 L^-1 (at 25 ℃) for the association constant was obtained by CEMSA.
基金Funded by the China Scholarship Council and Hubei Provincial Department of Education of China(201308420539)the Science and Technology Research Program of Hubei Provincial Department of Education of China(Q20131105,B2016008)+1 种基金the Coal Conversion and New Carbon Materials Hubei Key Laboratory(Wuhan University of Science and Technology(WKDM201505,WKDM201507)the Wuhan University of Science and Technology Foundation of China(z00980,2014XG006)
文摘The thioglycollic acid(TGA) as a capping agent, CdTe/TGA quantum dots(QDs) with excellent properties were synthesized under microwave irradiation. The TGA/Cd/Te molar ratios, reaction time, temperature and p H are the crucial factors for properties of QDs. The QDs were characterized by UVvis absorption and fluorescence spectra, transmission electron microscopy and Fourier transform infrared spectroscopy. The experimental results show that when the p H value is 11.5 and molar ratio of TGA:Cd:Te is 1.2:1:0.4 at 100 ℃ heating for 15 min, the resulted QDs exhibit a high fluorescence quantum yield of 78%. The fluorescence full width at half maximum(FHMW) of QDs is around 23 nm. The products are spherical with average size of 3-5 nm. There is a strong coordination effect between TGA and Cd2+. Moreover, the results of interaction between as-made QDs and bovine serum albumin(BSA) suggest that the QDs-BSA binding reaction is a static quenching. The negative values of free energy(△G〈0) suggest that the binding process is spontaneous, △H〈0 and △S〈0 show that hydrogen bonds and van der Waals interactions play a major role in the binding reaction between QDs and BSA.
文摘The interaction of CdSe quantum dots (QDs) with bovine serum albumin (BSA) has been investigated with ultraviolet visible absorption spectroscopy (UVAS). It was found that the absorption intensity of CdSe QDs significantly decreased after adding BSA solution, showing that CdSe QDs were bonded to BSA. The binding molar ratio was 1:1 and the binding constant was 9.7 × 10^6 L mol^-1.
文摘The interaction between clarithromycin (CAM) and bovine serum albumin (BSA) was investigated using linear-sweep voltammetry in pH 7.4 phosphate buffer solution where CAM caused two irreversible reduction waves P2 and P3 on mercury electrode. The study showed that the formation constant and formation ratio for the interaction between CAM and BSA were 1.51 × 10(12) and 3:1 for P2, 4.53 × 10(5) and 1:1 for P3, respectively. The ion strength enhanced the hydrophobic interaction between CAM and BSA.
文摘[Objective]The aim was to study the interaction characteristic of bovine serum albumin (BSA) and carbofuran. [ Method]With synchronous fluorescence spectrometry adopted, the interaction of carbofuran and BSA in Tris-HCI buffer system (pH 7.40) was investigated. The binding constants at different temperatures were calculated and the interaction types between carbofuran and BSA were discussed. [ Result] Under normal physiological conditions, higher quenching effect of carbofuran on BSA was electrostatic interaction. The changes of different drug concentrations and temperature proved a static quenching of carbofuran with BSA. The binding constants (KSV) at 25 ℃, 37 ℃ and 50 ℃ were 1.17 × 10^4, 1.07 × 10^4 and 0. 99 × 10^4 L/mol respectively with ratio of carbofuran and BSA at 1 : 1. [ Conclusion ] The research is of guiding significance for learning transport and metabolism of carbofuran at molecular level.
基金This work was supported by the National Natural Science Foundation of China (No.21402114), the Natural Science Basic Research Plan in Shaanxi Province of China (2016JM2010 and 2014JM1013), the Fundamental Research Funds for the Central Universities (2017CSY004, GK201603026).
文摘The interaction between bovine serum albumin (BSA) and the anionic 1.2-dipalmitoyl-snglycero- 3-(phospho-rac-(1-glycerol)) (sodium salt) (DPPG) phospholipid at different subphase pH values was investigated at air-water interface through surface pressure measurements and atomic force microscopy (AFM) observation. By analyzing surface pressure-mean molecular area (π-A) isotherms, the limiting molecular area in the closed packing state-the concentration of BSA (Alim-[BSA]) curves, the compressibility coefficient-surface pressure (CS-1-π) curves and the difference value of mean molecular area-the concentration of BSA (ΔA-[BSA]) curves, we obtained that the mean molecular area of DPPG monolayer became much larger when the concentration of BSA in the subphase increased at pH=3 and 5. But the isotherms had no significant change at different amount of BSA at pH=10. In addition, the amount of BSA molecules adsorbed onto the lipid monolayer reached a threshold value when [BSA]〉5×10-8 mol/L for all pHs. From the surface pressure-time (π-t) data, we obtained that desorption and adsorption processes occurred at pH=3, however, there was only desorption process occurring at pH=5 and 10. These results showed that the interaction mechanism between DPPG and BSA molecules was affected by the pH of subphase. BSA molecules were adsorbed onto the DPPG monolayers mainly through the hydrophobic interaction at pH=3 and 5, and the strength of hydrophobic interaction at pH=3 was stronger than the case of pH=5. At pH=10, a weaker hydrophobic interaction and a stronger electrostatic repulsion existed between DPPG and BSA molecules. AFM images revealed that the pH of subphase and [BSA] could affect the morphology features of the monolayers, which was consistent with these curves. The study provides an important experimental basis and theoretical support to understand the interaction between lipid and BSA at the air-water interface.
基金supported by the National Key Research and Development Program of China under Grant(2022YFF1102800)the Graduate Scientific Research Innovation Project of Tianji(2022SKY109)+1 种基金the Project of Tianjin Science and Technology Program(22JCYBJC00360)the Project of Tianjin Science and Technology Program(21ZYJDJC00060)。
文摘Epicatechin(EC)was used in this study to antagonize the cognitive dysfunction caused by lead(Pb)exposure in mice.Eight-week-old male Kunming mice were treated with PbCl_(2)(20 mg/kg)and/or EC(50 mg/kg)by gavage administration for 4 weeks.Morris water maze test showed that EC could improve memory dysfunction induced by Pb.EC antagonized Ca^(2+)overload,activated Nrf2 signaling pathway and reduced the accumulation of Pb in the brain and serum,which suggested that EC might alter Pb distribution in mice.In vitro,spectroscopic analysis,potentiometric titration and docking studies were applied to inquiry into the interaction between bovine serum albumin(BSA)and Pb^(2+)in presence or absence of EC.EC was proved to chelate Pb^(2+)and reduced the interaction between BSA and Pb^(2+).In summary,EC might protect Pb-induced cognitive impairment by activating Nrf2 signaling pathway,and suppressing Pb accumulation via interference on the binding of Pb to albumin.
文摘We previously studied the mechanism underlying the adsorption of oral bacteria on the surfaces of dental prosthetic materials such as ceramics and resins in vitro. The aim of the present study was to examine bovine serum albumin (BSA) adsorption on crown composite resin surfaces by means of zeta potential. We measured the zeta potentials of resins alone, BSA alone, and resins after BSA adsorption. Eight resins were pulverized into powders (300 - 1000 nm). All experiments were conducted in 10 mM sodium chloride solution (pH 6.5). BSA was dissolved in 10 mM NaCl with a concentration of 2.0 × 10-5 mol/l. An adsorption assay was performed for one hour at 37°C under continuous rotation (6 rpm). The zeta potentials of both resins and BSA were negative, with BSA itself less negative than the resins themselves as an absolute value (p < 0.0001). The zeta potentials of seven resin surfaces after BSA adsorption were significantly less negative than were those of the resins without BSA adsorption (p < 0.0001). Eight resins were divided into two classes based on the size of the surface potential difference between each resin and the BSA. The difference in surface potential between the resins and the BSA were small, leading to the theory that particles with identical charges repulse each other, and the amounts of adsorbed BSA on these resins might be less. On the other, when the differences between the other resins and BSA are large, so that the repulsive force between two nonidentical particles becomes zero and an attractive force might be generated, then more BSA might be adsorbed on those resins. Therefore, the zeta potentials were affected by BSA adsorption and became less negative. These results suggested that electrostatic interactions play an important role in the adsorption of BSA on resin surfaces.
文摘The binding mechanism of the interactions of halide ions (F–, Br– and I–) with bovine serum albumin (BSA) and hemoglobin (Hb) were studied at different temperatures, by using ion-selective electrodes. The experimental data were treated according to Klotz equation, and the number of binding sites and the binding constants were determined. The results show that the binding sites of F– on protein molecules are more than those of Br– and I–. Additionally, the number of the binding sites for halide ions on protein molecules increases with increasing temperature. This study also indicates that the binding constants for the interactions of halide ions with proteins gradually decrease as the size of halide ions and temperature increases. These behaviors were reasonably interpreted with the structural and thermodynamic factors. The thermodynamic functions at different temperatures were calculated with thermodynamic equations, and the enthalpy change for the interactions were also determined by isothermal titration calorimetry (ITC) at 298.15 K, which indicate that the interactions of halide ions with proteins are mainly electrostatic interaction.
基金Funded by the Natural Science Foundation of Hubei Province(2017CFB680)the Open Fund of the State Key Laboratory of Refractories and Metallurgy Wuhan University of Science and Technology(G201703)+2 种基金the Fund of Key Laboratory of Measurement and Control System for Offshore Environment,Fuqing Branch of Fujian Normal University(SI-KF1604)the Guiding Projects in Fujian Province(2018H0013)the Key Natural Fund Projects of Universities in Fujian Province(JZ160490)
文摘Using L-glutathione(GSH) as a capping agent,Zn Se/GSH quantum dots(QDs) were prepared under microwave irradiation and irradiated under dark, ultraviolet light and incandescent light, respectively. The properties and interaction of different lights irradiated ZnSe/GSH QDs and bovine serum albumin(BSA) were studied systematically. The fluorescence(FL) spectra results reveal that the quenching mechanism are all the static quenching in nature. The quenching constant(Ksv) and binding constant(K) value of different irradiated Zn Se/GSH QDs and BSA all increased with the change of light types from dark to incandescent light and UV light. The number of binding site(n) is close to 1 at different temperatures. The lighting types influence the enthalpy and entropy changes. The Fourier transform infrared(FTIR) spectra indicate that the light induced GSH ligand will facilitate photocatalytic oxidation on the surface of ZnSe/GSH QDs. The circular dichroism(CD)results show that the α-helicity content of BSA decreases from 60.34%, 59.31%, to 58.79% under UV lighting,incandescent lighting and dark conditions. The interaction results of different lights illuminated ZnSe/GSH QDs with BSA by CD spectra method matches well with that by FL and FTIR spectra. That is, the interaction of ZnSe/GSH QDs and BSA from strong to weak is UV light, incandescent light and dark in sequence.
文摘In this study,voltammetric and spectroscopic investigation of the interaction between Janus Green B(JGB) and bovine serum albumin(BSA) was reported.The interaction was observed at Britton-Robinson buffer(pH 7.0).When JGB was added to solution containing BSA,the peak currents of BSA decrease with the increasing of JGB concentrations which is due to the interaction of JGB and BSA.The binding constant of JGB with BSA was obtained by voltammetric data.Also,this interaction was supported by means of UV-vis spectroscopic measurements.The UV-vis absorption spectra of JGB in the presence of BSA decrease with the increasing of BSA concentrations.
基金supported by Health and Family Planning Commission of Jilin Province(No.2017J056)
文摘Three kinds of stearic acid(SA)-modified Bletilla striata polysaccharides(BSPs-SA) conjugates with different degrees of substitution(DS) values of SA moiety were synthesized. The impacts of the DS values on the properties of BSPs-SA self-aggregated nanoparticles were determined. The interactions between bovine serum albumin(BSA) and the BSPs-SA nanoparticles were characterized using spectroscopic observations. The cytotoxicity was measured through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) method. The critical aggregation concentration and the average particle sizes reduced from 16.81 μg/mL to 3,09 μg/mL and 192.70 nm to 125.29 nm when the DS values of SA segment increased from 4.98% to 12.94%, respectively. The cumulative release percentage of docetaxel in BSPs-SA nanoparticles decreased whereas encapsulation efficiency and loading capacity increased along with the DS increase of SA moiety. The fluorescence and ultraviolet results demonstrated that the conformation of BSA did not show significant change after incubating with BSPs-SA nanoparticles.Besides, the mass ratio of BSA/BSPs-SA affected their affinity intensity. The inhibition capability of cell proliferation of docetaxel-loaded BSPs-SA nanoparticles against 4 T1 was superior to that of Duopafei;.BSPs-SA nanoparticles may become a promising nanocarrier for anticancer drugs by adjusting the DS values of the hydrophobic SA groups.
基金Project supported by the National Natural Science Foundation of China (No 30470886).
文摘Potassium dehydroandrographolide succinate (DAS-K) has antibacterial and antiviral effects. It has been used widely for the treatment of virus pneumonia, malaria and respiratory infections. In this work, a novel flow-injection chemiluminescence (CL) method for the determination of DAS-K was proposed. The method is based on the reaction between DAS-K and hexacyanoferrate(III) in alkaline solution to give weak CL signal, which is enhanced by rhodamine B. The experimental conditions for the CL reaction were optimized and the possible reaction mechanism was discussed. Under the optimum conditions, the concentration of DAS-K is proportional to the CL intensity in the range of 0.1-80 μmol·L^-1 with a detection limit of 0.05 μmol·L^-1. The interaction of the DAS-K with bovine serum albumin by on-line ultrafiltration and flow-injection chemiluminescence was studied. The concentrations of unbound DAS-K from ultra filter tube were determined by the flow-injection CL method. The binding parameters were estimated by the Scatchard plot and Klotz plot. The proposed system proved that FIA-CL coupled with on-line ultrafiltration sampling was a fast and simple technique for the study of drug-protein interaction.
基金the support of National Natural Science Foundation of China(No31100722)Specialized Research Fund for the Doctoral Program of Higher Education(No20090032120013)
文摘Bovine serum albumin(BSA) was utilized to assemble with the binary complexes of poly(vinylpyrrolidone)-graft-poly(2- dimethylaminoethyl methacrylate)(PVP-g-PDMAEMA)/DNA formed by layer-by-layer electrostatic interactions to screen the residual surface positive charges of complexes.The coating of BSA was able to decrease the zeta potential of binary complexes nearly to electroneutrality without interfering with DNA condensation ability.The ternary complexes of BSA/PVP-g-PDMAEMA/ DNA demonstrated lower cytotoxicity compared with the binary complexes and also maintained high gene transfection efficiency in HepG2 cells.