We investigate optical properties of a bowtie-shaped aperture using the finite difference time domain method to optimize its geometric parameters for specific incident lights. The influence of the parameters on local ...We investigate optical properties of a bowtie-shaped aperture using the finite difference time domain method to optimize its geometric parameters for specific incident lights. The influence of the parameters on local field enhancement and resonant wavelength in the visible frequency range is numerically analysed. It is found that the major resonance of the spectrum is exponentially depended on the bowtie angle but independent of the whole aperture size. The simulation also demonstrates that increasing the aperture size raises the local field intensity on the exit plane due to an enlarged interaction area between the light and the metal medium. And the near-field spot size is closely related to the gap. Based on these results, the design rules of the bowtie structure can be optimized for specific wavelengths excited.展开更多
We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon ...We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon photoemission electron microscopy. Different photoemission patterns induced by the plasmon effect are observed when the bowties are excited by s- and p-polarized femtosecond laser pulses. A series of images of the evolution of local surface plasmon modes on different tips of the bowtie are obtained by the time-resolved three-photon photoemission electron microscopy, and the result discloses that plasmon excitation is dominated by the interfer- ence of the pump and probe pulses within the first 13 fs of the delay time, and thereafter the individual plasmon starts to oscillate on its own characteristic resonant frequencies.展开更多
Optical antennas play an important role in optical field manipulation.Among them,nanoscale bowtie antennas have been extensively studied for its high confinement and enhancement.In this mini-review,we start with a bri...Optical antennas play an important role in optical field manipulation.Among them,nanoscale bowtie antennas have been extensively studied for its high confinement and enhancement.In this mini-review,we start with a brief introduction of bowtie antennas and underlying physics.Then we review the applications with respect to optically and electrically excited nanoscale bowtie antennas.Optically driven bowtie antennas enable a set of optical applications such as near-field imaging/trapping,nonlinear response,nanolithography,photon generation and detection.Finally,we put emphasis on the principle and applications of electrically driven bowtie antennas,an emerging method of generating ultrafast and broadband tunable nanosources.In a word,nanoscale bowtie antennas still have great potential research value to explore.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10975012)
文摘We investigate optical properties of a bowtie-shaped aperture using the finite difference time domain method to optimize its geometric parameters for specific incident lights. The influence of the parameters on local field enhancement and resonant wavelength in the visible frequency range is numerically analysed. It is found that the major resonance of the spectrum is exponentially depended on the bowtie angle but independent of the whole aperture size. The simulation also demonstrates that increasing the aperture size raises the local field intensity on the exit plane due to an enlarged interaction area between the light and the metal medium. And the near-field spot size is closely related to the gap. Based on these results, the design rules of the bowtie structure can be optimized for specific wavelengths excited.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922404the National Natural Science Foundation of China under Grant Nos 11474040 11274053,11474039 and 61178022the Project under Grant No 14KP007
文摘We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon photoemission electron microscopy. Different photoemission patterns induced by the plasmon effect are observed when the bowties are excited by s- and p-polarized femtosecond laser pulses. A series of images of the evolution of local surface plasmon modes on different tips of the bowtie are obtained by the time-resolved three-photon photoemission electron microscopy, and the result discloses that plasmon excitation is dominated by the interfer- ence of the pump and probe pulses within the first 13 fs of the delay time, and thereafter the individual plasmon starts to oscillate on its own characteristic resonant frequencies.
基金This work is supported by National Key Research and Development Program of China(2018YFB2200900)the Key R&D Program of Anhui(Grant No.202004A05020077)National Natural Science Foundation of China(61775206).The nanofabrication was carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.We also thank Prof.Xianfan Xu of Purdue University for his warm-hearted discussion.
文摘Optical antennas play an important role in optical field manipulation.Among them,nanoscale bowtie antennas have been extensively studied for its high confinement and enhancement.In this mini-review,we start with a brief introduction of bowtie antennas and underlying physics.Then we review the applications with respect to optically and electrically excited nanoscale bowtie antennas.Optically driven bowtie antennas enable a set of optical applications such as near-field imaging/trapping,nonlinear response,nanolithography,photon generation and detection.Finally,we put emphasis on the principle and applications of electrically driven bowtie antennas,an emerging method of generating ultrafast and broadband tunable nanosources.In a word,nanoscale bowtie antennas still have great potential research value to explore.