In this paper, forecasting analysis to Box Cox transformation models with a practical example is considered. Based on chosen generalized functional form, variables influencing passenger are selected by statistic mech...In this paper, forecasting analysis to Box Cox transformation models with a practical example is considered. Based on chosen generalized functional form, variables influencing passenger are selected by statistic mechanism, not just by subjective judgment or dependent on certain specified model, and forecasting models are constructed. Comparing with typical linear regression forecasting models, nonlinear forecasting models are more effective and precise. Based on collecting data and final forecasting models, forecasting results are obtained and forecasting errors are analyzed. Finally, some helpful conclusions can be drawn from this study.展开更多
In this paper, we analyzed length of stay (LOS) in hospitals and medical expenditures for type 2 diabetes patients. LOS was analyzed by the power Box-Cox transformation model when variances differed among hospitals. W...In this paper, we analyzed length of stay (LOS) in hospitals and medical expenditures for type 2 diabetes patients. LOS was analyzed by the power Box-Cox transformation model when variances differed among hospitals. We proposed a new test and consistent estimator. We rejected the ho-moscedasticity of variances among hospitals, and then analyzed the LOS of 12,666 type 2 diabetes patients hospitalized for regular medical treatments collected from 60 general hospitals in Japan. The variables found to affect LOS were age, number of comorbidities and complications, introduced by another hospital, one-week hospitalization, 2010 revision, specific-hospitalization-period (SHP), and principal diseases E11.5, E11.6 and E11.7. There were surprisingly large differences in ALOS among hospitals even after eliminating the influence of characteristics and conditions of patients. We then analyzed daily medical expenditure (DME) by the ordinary least squares methods. The variables that affected DME were LOS, number of comorbidities and complications, acute hospitalization, hospital’s own outpatient, season, introduced by another hospital, one-week hospitalization, 2010 revision, SHP, time trend, and principal diseases E11.2, E11.4 and E117. The DME did not decrease after the SHP. After eliminating the influences of characteristics and conditions of patients, the differences among hospitals were relatively small, 12% of the overall average. LOS is the main determinant of medical expenditures, and new incentives to reduce LOS are needed to control Japanese medical expenditures. Since at least 99% of patients require medical care after leaving the hospital, systems that take proper care of patients for long periods of time after hospitalization are absolutely necessary for efficient treatment of diabetes.展开更多
The use of [1] Box-Cox power transformation in regression analysis is now common;in the last two decades there has been emphasis on diagnostics methods for Box-Cox power transformation, much of which has involved dele...The use of [1] Box-Cox power transformation in regression analysis is now common;in the last two decades there has been emphasis on diagnostics methods for Box-Cox power transformation, much of which has involved deletion of influential data cases. The pioneer work of [2] studied local influence on constant variance perturbation in the Box-Cox unbiased regression linear mode. Tsai and Wu [3] analyzed local influence method of [2] to assess the effect of the case-weights perturbation on the transformation-power estimator in the Box-Cox unbiased regression linear model. Many authors noted that the influential observations on the biased estimators are different from the unbiased estimators. In this paper I describe a diagnostic method for assessing the local influence on the constant variance perturbation on the transformation in the Box-Cox biased ridge regression linear model. Two real macroeconomic data sets are used to illustrate the methodologies.展开更多
The Japanese medical costs for cataract treatments reached 270 billion yen in fiscal year 2012. Since the length of stay (LOS) in hospital is much longer than other major countries, controlling the medical costs by re...The Japanese medical costs for cataract treatments reached 270 billion yen in fiscal year 2012. Since the length of stay (LOS) in hospital is much longer than other major countries, controlling the medical costs by reducing LOS becomes an important issue in Japan. In this paper, we evaluated the effects of the 2010 revision of the Japanese medical payment system (DPC/PDPS) on LOS for cataract operations. The Box-Cox transformation model, Nawata’s estimators and Hausman tests were used in the analysis. To evaluate the effects, we analyzed a dataset obtained from 34 DPC hospitals (Hp1-34) where one-eye cataract operations were performed both before (April 2008-March 2010) and after (April 2010-March 2012) the 2010 revision and there were more than 500 patients. The dataset contained information from 32,593 patients. We did not admit the effect of the 2010 revision in this study, and there were large differences LOS among hospitals, even after removing the influences of factors such as patient characteristics and types of principal diseases.展开更多
This paper considers the asymptotic efficiency of the maximum likelihood estimator (MLE) for the Box-Cox transformation model with heteroscedastic disturbances. The MLE under the normality assumption (BC MLE) is a con...This paper considers the asymptotic efficiency of the maximum likelihood estimator (MLE) for the Box-Cox transformation model with heteroscedastic disturbances. The MLE under the normality assumption (BC MLE) is a consistent and asymptotically efficient estimator if the “small ” condition is satisfied and the number of parameters is finite. However, the BC MLE cannot be asymptotically efficient and its rate of convergence is slower than ordinal order when the number of parameters goes to infinity. Anew consistent estimator of order is proposed. One important implication of this study is that estimation methods should be carefully chosen when the model contains many parameters in actual empirical studies.展开更多
Software fault prediction is one of the most fundamental but significant management techniques in software dependability assessment. In this paper we concern the software fault prediction using a multilayer-perceptron...Software fault prediction is one of the most fundamental but significant management techniques in software dependability assessment. In this paper we concern the software fault prediction using a multilayer-perceptron neural network, where the underlying software fault count data are transformed to the Gaussian data, by means of the well-known Box-Cox power transformation. More specially, we investigate the long-term behavior of software fault counts by the neural network, and perform the multi-stage look ahead prediction of the cumulative number of software faults detected in the future software testing. In numerical examples with two actual software fault data sets, we compare our neural network approach with the existing software reliability growth models based on nonhomogeneous Poisson process, in terms of predictive performance with average relative error, and show that the data transformation employed in this paper leads to an improvement in prediction accuracy.展开更多
Discrimination and classification rules are based on different types of assumptions. Also, all most statistical methods are based on some necessary assumptions. Parametric methods are the best choice if it follows all...Discrimination and classification rules are based on different types of assumptions. Also, all most statistical methods are based on some necessary assumptions. Parametric methods are the best choice if it follows all the underlying assumptions. When assumptions are violated, parametric approaches do not provide a better solution and nonparametric techniques are preferred. After Box-Cox transformation, when assumptions are satisfied, parametric methods provide fewer misclassification rates. With this problem in mind, our concern is to compare the classification accuracy of parametric and non-parametric approaches with the aid of Box-Cox transformation and Bootstrapping. We carried Support Vector Machines (SVMs) and different discrimination and classification rules to classify objects. The attention is to critically compare the SVMs with Linear discrimination Analysis (LDA), and Quadratic discrimination Analysis (QDA) for measuring the performance of these techniques before and after Box-Cox transformation using misclassification rates. From the apparent error rates, we observe that before Box-Cox transformation, SVMs perform better than existing classification techniques, on the other hand, after Box-Cox transformation, parametric techniques provide fewer misclassification rates compared to nonparametric method. We also investigated the performances of classification techniques using the Bootstrap approach and observed that Bootstrap-based classification techniques significantly reduce the classification error rate than the usual techniques of small samples. Thus, this paper proposes to apply classification techniques under the Bootstrap approach for classifying objects in case of small sample. A real and simulated datasets application is carried out to see the performance.展开更多
风电场准确的风速预测可以减轻或避免风电对电网的不利影响,有利于在开放的电力市场环境下正确制定电能交换计划,提高风电竞争力。基于风速序列的时序性,使用极大似然法对风速序列进行了Box-Cox最优变换,建立了ARMA(p,q)风速预测模型。...风电场准确的风速预测可以减轻或避免风电对电网的不利影响,有利于在开放的电力市场环境下正确制定电能交换计划,提高风电竞争力。基于风速序列的时序性,使用极大似然法对风速序列进行了Box-Cox最优变换,建立了ARMA(p,q)风速预测模型。为检验时间序列模型的有效性,利用最小信息准则中的BIC(Bayesian Information Criterion)函数对ARMA(p,q)模型进行识别,并通过风速频率曲线对预测结果进行了修正。仿真结果和算例验证了该方法在风电场风速预测中的适用性,具有一定的实用价值。展开更多
文摘In this paper, forecasting analysis to Box Cox transformation models with a practical example is considered. Based on chosen generalized functional form, variables influencing passenger are selected by statistic mechanism, not just by subjective judgment or dependent on certain specified model, and forecasting models are constructed. Comparing with typical linear regression forecasting models, nonlinear forecasting models are more effective and precise. Based on collecting data and final forecasting models, forecasting results are obtained and forecasting errors are analyzed. Finally, some helpful conclusions can be drawn from this study.
文摘In this paper, we analyzed length of stay (LOS) in hospitals and medical expenditures for type 2 diabetes patients. LOS was analyzed by the power Box-Cox transformation model when variances differed among hospitals. We proposed a new test and consistent estimator. We rejected the ho-moscedasticity of variances among hospitals, and then analyzed the LOS of 12,666 type 2 diabetes patients hospitalized for regular medical treatments collected from 60 general hospitals in Japan. The variables found to affect LOS were age, number of comorbidities and complications, introduced by another hospital, one-week hospitalization, 2010 revision, specific-hospitalization-period (SHP), and principal diseases E11.5, E11.6 and E11.7. There were surprisingly large differences in ALOS among hospitals even after eliminating the influence of characteristics and conditions of patients. We then analyzed daily medical expenditure (DME) by the ordinary least squares methods. The variables that affected DME were LOS, number of comorbidities and complications, acute hospitalization, hospital’s own outpatient, season, introduced by another hospital, one-week hospitalization, 2010 revision, SHP, time trend, and principal diseases E11.2, E11.4 and E117. The DME did not decrease after the SHP. After eliminating the influences of characteristics and conditions of patients, the differences among hospitals were relatively small, 12% of the overall average. LOS is the main determinant of medical expenditures, and new incentives to reduce LOS are needed to control Japanese medical expenditures. Since at least 99% of patients require medical care after leaving the hospital, systems that take proper care of patients for long periods of time after hospitalization are absolutely necessary for efficient treatment of diabetes.
文摘The use of [1] Box-Cox power transformation in regression analysis is now common;in the last two decades there has been emphasis on diagnostics methods for Box-Cox power transformation, much of which has involved deletion of influential data cases. The pioneer work of [2] studied local influence on constant variance perturbation in the Box-Cox unbiased regression linear mode. Tsai and Wu [3] analyzed local influence method of [2] to assess the effect of the case-weights perturbation on the transformation-power estimator in the Box-Cox unbiased regression linear model. Many authors noted that the influential observations on the biased estimators are different from the unbiased estimators. In this paper I describe a diagnostic method for assessing the local influence on the constant variance perturbation on the transformation in the Box-Cox biased ridge regression linear model. Two real macroeconomic data sets are used to illustrate the methodologies.
文摘The Japanese medical costs for cataract treatments reached 270 billion yen in fiscal year 2012. Since the length of stay (LOS) in hospital is much longer than other major countries, controlling the medical costs by reducing LOS becomes an important issue in Japan. In this paper, we evaluated the effects of the 2010 revision of the Japanese medical payment system (DPC/PDPS) on LOS for cataract operations. The Box-Cox transformation model, Nawata’s estimators and Hausman tests were used in the analysis. To evaluate the effects, we analyzed a dataset obtained from 34 DPC hospitals (Hp1-34) where one-eye cataract operations were performed both before (April 2008-March 2010) and after (April 2010-March 2012) the 2010 revision and there were more than 500 patients. The dataset contained information from 32,593 patients. We did not admit the effect of the 2010 revision in this study, and there were large differences LOS among hospitals, even after removing the influences of factors such as patient characteristics and types of principal diseases.
文摘This paper considers the asymptotic efficiency of the maximum likelihood estimator (MLE) for the Box-Cox transformation model with heteroscedastic disturbances. The MLE under the normality assumption (BC MLE) is a consistent and asymptotically efficient estimator if the “small ” condition is satisfied and the number of parameters is finite. However, the BC MLE cannot be asymptotically efficient and its rate of convergence is slower than ordinal order when the number of parameters goes to infinity. Anew consistent estimator of order is proposed. One important implication of this study is that estimation methods should be carefully chosen when the model contains many parameters in actual empirical studies.
文摘Software fault prediction is one of the most fundamental but significant management techniques in software dependability assessment. In this paper we concern the software fault prediction using a multilayer-perceptron neural network, where the underlying software fault count data are transformed to the Gaussian data, by means of the well-known Box-Cox power transformation. More specially, we investigate the long-term behavior of software fault counts by the neural network, and perform the multi-stage look ahead prediction of the cumulative number of software faults detected in the future software testing. In numerical examples with two actual software fault data sets, we compare our neural network approach with the existing software reliability growth models based on nonhomogeneous Poisson process, in terms of predictive performance with average relative error, and show that the data transformation employed in this paper leads to an improvement in prediction accuracy.
文摘Discrimination and classification rules are based on different types of assumptions. Also, all most statistical methods are based on some necessary assumptions. Parametric methods are the best choice if it follows all the underlying assumptions. When assumptions are violated, parametric approaches do not provide a better solution and nonparametric techniques are preferred. After Box-Cox transformation, when assumptions are satisfied, parametric methods provide fewer misclassification rates. With this problem in mind, our concern is to compare the classification accuracy of parametric and non-parametric approaches with the aid of Box-Cox transformation and Bootstrapping. We carried Support Vector Machines (SVMs) and different discrimination and classification rules to classify objects. The attention is to critically compare the SVMs with Linear discrimination Analysis (LDA), and Quadratic discrimination Analysis (QDA) for measuring the performance of these techniques before and after Box-Cox transformation using misclassification rates. From the apparent error rates, we observe that before Box-Cox transformation, SVMs perform better than existing classification techniques, on the other hand, after Box-Cox transformation, parametric techniques provide fewer misclassification rates compared to nonparametric method. We also investigated the performances of classification techniques using the Bootstrap approach and observed that Bootstrap-based classification techniques significantly reduce the classification error rate than the usual techniques of small samples. Thus, this paper proposes to apply classification techniques under the Bootstrap approach for classifying objects in case of small sample. A real and simulated datasets application is carried out to see the performance.
文摘风电场准确的风速预测可以减轻或避免风电对电网的不利影响,有利于在开放的电力市场环境下正确制定电能交换计划,提高风电竞争力。基于风速序列的时序性,使用极大似然法对风速序列进行了Box-Cox最优变换,建立了ARMA(p,q)风速预测模型。为检验时间序列模型的有效性,利用最小信息准则中的BIC(Bayesian Information Criterion)函数对ARMA(p,q)模型进行识别,并通过风速频率曲线对预测结果进行了修正。仿真结果和算例验证了该方法在风电场风速预测中的适用性,具有一定的实用价值。