The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were d...The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were designed to calculate the standard enthalpy of formation(△fHθ) and standard free energy of formation(△fGθ) of PBXTH congeners.The relations of these thermodynamic parameters with the number and position of Br atom substitution(NPBS) were discussed,and it was found that there exist high correlation between thermodynamic parameters(entropy(Sθ),△fHθ and △fGθ) and NPBS.According to the relative magnitude of their △fGθ,the relative stability order of PBXTH congeners was theoretically proposed.The relative rate constants of formation reactions of PBXTH congeners were calculated,Moreover,the values of molar heat capacity at constant pressure(Cp,m) from 200 to 1000 K for PBXTH congeners were also calculated,and the temperature dependence relation of them was obtained,suggesting very good relationships between Cp,m and temperature(T,T^1 and T^2) for almost all PBXTH congeners.展开更多
The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) wit...The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) with Gaussian 03. Based on these data, the isodesmic reacflons are designed to calculate the standard enthalpy of formation (△fH^θ) and the standard Gibbs energy of formation (△fG^θ) of PBDTs. The relations of these thermodynamic parameters with the number and positionof bromine subsfituents (NPBS) are discussed, and it is found that there exist good correlations between othermody namic parameters (including heat capacity at constant volume, entropy, enthaipy, free energy, △fH^θ, △fG^θ) and NPBS. Thoe relative stability order of PBDT congeners is proposed theoretically based on the relative magnitude of their △fG^θ. In addition, the values of molar heat capacities at constant pressure (Cp,m) for PBDT c ongelaers are calculated.展开更多
Modulation of the surface electron distribution is a challenging problem that determines the adsorption ability of catalytic process.Here,we address this challenge by bridging the inner and outer layers of the core–s...Modulation of the surface electron distribution is a challenging problem that determines the adsorption ability of catalytic process.Here,we address this challenge by bridging the inner and outer layers of the core–shell structure through the bridge Br atom.Carbon shell wrapped copper bromide nanorods(CuBr@C)are constructed for the first time by chemical vapour deposition with hexabromobenzene(HBB).HBB pyrolysis provides both bridge Br atom and C shells.The C shell protects the stability of the internal halide structure,while the bridge Br atom triggers the rearrangement of the surface electrons and exhibits excellent electrocatalytic activity.Impressively,the hydrogen evolution reaction(HER)activity of CuBr@C is significantly better than that of commercial N-doped carbon nanotubes,surpassing commercial Pt/C at over 200 mA·cm^(−2).Density functional theory(DFT)calculations reveal that bridge Br atoms inspire aggregation of delocalized electrons on C-shell surfaces,leading to optimization of hydrogen adsorption energy.展开更多
The structural change of purple membrane during storage has been investigated by means of transmission electron microscope and atomic force microscope. It is found that many liposomes have spontaneously evolved from t...The structural change of purple membrane during storage has been investigated by means of transmission electron microscope and atomic force microscope. It is found that many liposomes have spontaneously evolved from the purple membrane sheets isolated three years ago. The membrane proteins on the liposomes, bacteriorhodopsin, are still presented as trimers in 2-D hexagonal structure, which is the same as that in natural cell membrane. However, the cytoplasmic surface of purple membrane faced outside on the liposomes.展开更多
基金Supported by the NNSFC (20737001, 20977046)NSF of Zhejiang Province (2008Y507280)
文摘The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were designed to calculate the standard enthalpy of formation(△fHθ) and standard free energy of formation(△fGθ) of PBXTH congeners.The relations of these thermodynamic parameters with the number and position of Br atom substitution(NPBS) were discussed,and it was found that there exist high correlation between thermodynamic parameters(entropy(Sθ),△fHθ and △fGθ) and NPBS.According to the relative magnitude of their △fGθ,the relative stability order of PBXTH congeners was theoretically proposed.The relative rate constants of formation reactions of PBXTH congeners were calculated,Moreover,the values of molar heat capacity at constant pressure(Cp,m) from 200 to 1000 K for PBXTH congeners were also calculated,and the temperature dependence relation of them was obtained,suggesting very good relationships between Cp,m and temperature(T,T^1 and T^2) for almost all PBXTH congeners.
基金Supported by the National Natural Science Foundation of China (20737001).
文摘The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) with Gaussian 03. Based on these data, the isodesmic reacflons are designed to calculate the standard enthalpy of formation (△fH^θ) and the standard Gibbs energy of formation (△fG^θ) of PBDTs. The relations of these thermodynamic parameters with the number and positionof bromine subsfituents (NPBS) are discussed, and it is found that there exist good correlations between othermody namic parameters (including heat capacity at constant volume, entropy, enthaipy, free energy, △fH^θ, △fG^θ) and NPBS. Thoe relative stability order of PBDT congeners is proposed theoretically based on the relative magnitude of their △fG^θ. In addition, the values of molar heat capacities at constant pressure (Cp,m) for PBDT c ongelaers are calculated.
基金the National Natural Science Foundation of China(Nos.51872116 and 12034002)Jilin Province Science and Technology Development Program(No.20210301009GX)+3 种基金Project for Self-innovation Capability Construction of Jilin Province Development and Reform Commission(No.2021C026)the Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,No.2017TD-09)Jilin Province Science and Technology Development Program(No.20190201233JC)the Fundamental Research Funds for the Central Universities.
文摘Modulation of the surface electron distribution is a challenging problem that determines the adsorption ability of catalytic process.Here,we address this challenge by bridging the inner and outer layers of the core–shell structure through the bridge Br atom.Carbon shell wrapped copper bromide nanorods(CuBr@C)are constructed for the first time by chemical vapour deposition with hexabromobenzene(HBB).HBB pyrolysis provides both bridge Br atom and C shells.The C shell protects the stability of the internal halide structure,while the bridge Br atom triggers the rearrangement of the surface electrons and exhibits excellent electrocatalytic activity.Impressively,the hydrogen evolution reaction(HER)activity of CuBr@C is significantly better than that of commercial N-doped carbon nanotubes,surpassing commercial Pt/C at over 200 mA·cm^(−2).Density functional theory(DFT)calculations reveal that bridge Br atoms inspire aggregation of delocalized electrons on C-shell surfaces,leading to optimization of hydrogen adsorption energy.
基金This work was supported by the State Key Basic I Research and Development Plan Project (Grant No. 1998010102).
文摘The structural change of purple membrane during storage has been investigated by means of transmission electron microscope and atomic force microscope. It is found that many liposomes have spontaneously evolved from the purple membrane sheets isolated three years ago. The membrane proteins on the liposomes, bacteriorhodopsin, are still presented as trimers in 2-D hexagonal structure, which is the same as that in natural cell membrane. However, the cytoplasmic surface of purple membrane faced outside on the liposomes.