With the saddle point analysis method for the Bessel function structure and property, the convergence problem and the scaling laws of Thomson backscattering spectra are solved and studied in both cases that are for th...With the saddle point analysis method for the Bessel function structure and property, the convergence problem and the scaling laws of Thomson backscattering spectra are solved and studied in both cases that are for the plane wave laser field without and with applied external constant magnetic field. Some unclear points appeared in previous work are clarified. The extension of the method to a general situation for the laser field with an arbitrary polarization is discussed. We also make a simple analysis and discussion about the optimal spectra dependence of field parameters and its implication to practical applications.展开更多
The in-plane electrical and thermal conductivities of several polycrystalline platinum and gold nanofilms with different thicknesses are measured in a temperature range between the boiling point of liquid nitrogen (...The in-plane electrical and thermal conductivities of several polycrystalline platinum and gold nanofilms with different thicknesses are measured in a temperature range between the boiling point of liquid nitrogen (77K) and room temperature by using the direct current heating method. The result shows that both the electrical and thermal conductivities of the nanofilms reduce greatly compared with their corresponding bulk values. However, the electrical conductivity drop is considerably greater than the thermal conductivity drop, which indicates that the influence of the internal grain boundary on heat transport is different from that of charge transport, hence leading to the violation of the Wiedemann-Franz law. We build an electron relaxation model based on Matthiessen's rule to analyse the thermal conductivity and employ the Mayadas & Shatzkes theory to analyse the electrical conductivity. Moreover, a modified Wiedemann-Franz law is provided in this paper, the obtained results from which are in good agreement with the experimental data.展开更多
We present a method to characterize lysozyme pre-crystalline aggregates using a forward-light-scattering technique, which is highly sensitive to protein aggregates. The static light scattering properties at small angl...We present a method to characterize lysozyme pre-crystalline aggregates using a forward-light-scattering technique, which is highly sensitive to protein aggregates. The static light scattering properties at small angles of crystallizing lysozyme aggregates are discussed, and related to the crystallization conditions based on the concentration of added precipitant NaCl. Lysozyme solutions that started to crystallize because of precipitant exhibited profiles of forward light scattering that could be fitted by non-integer power laws, which indicated fractal aggregations of lysozyme had formed. Pre-crystalline solutions, in which lysozyme crystals later grew, had dense structural fractal clusters with fractal dimensions of D > 1.5. In contrast, solutions with aggregates in which crystals did not grow, had forward-light-scattering profiles that deviated from a power law or had lower power values.展开更多
In numerical simulation of wave scattering under oblique incident body waves using the finite element method, the free field motion at the incident lateral boundary induced by the background layered half-space complic...In numerical simulation of wave scattering under oblique incident body waves using the finite element method, the free field motion at the incident lateral boundary induced by the background layered half-space complicates the computational area. In order to replace the complex frequency domain method, a time-domain method to calculate the free field motion of a layered half-space subjected to oblique incident body waves is developed in this paper. The new method decouples the equations of motion used in the finite element method and offers an interpolation formula of the free field motion. This formula is based on the fact that the apparent horizontal velocity of the free field motion is constant and can be calculated exactly. Both the theoretical analysis and numerical results demonstrate that the proposed method offers a high degree of accuracy.展开更多
A method of obtaining bottom backscattering strength by employing an omnidirectional projector and omnidirectional hydrophone is proposed. The backscattering strength is extracted from monostatic backscattering data. ...A method of obtaining bottom backscattering strength by employing an omnidirectional projector and omnidirectional hydrophone is proposed. The backscattering strength is extracted from monostatic backscattering data. The method was adopted in an experiment conducted in the South Yellow Sea of China. The seafloor surface was relatively smooth and covered by a small quantity of shell fragments, as observed through a digital camera system. Sampling data showed that the main component of the sediment at this experimental site was fine sand. In this paper, we detail the calculation method. Preliminary results of backscattering strength as a function of grazing angle(20?–70?) in the frequency range of 6–24 kHz are presented. The measured backscattering strength increased with the grazing angle and changed more rapidly at large grazing angles(60?–70?). A comparison of the data at different frequencies reveals that the measured backscattering strength substantially rises with the increase of acoustic frequency. A fitting curve of Lambert's law against the measured data shows that the backscattering strength deviates from Lambert's law at large grazing angles.展开更多
According to Bradford’s law of scattering,this article makes a statistical analysis of the core and general journals of the library of Chongqing Medical University so as to make its journal holdings more rational.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11475026 and 11175023)
文摘With the saddle point analysis method for the Bessel function structure and property, the convergence problem and the scaling laws of Thomson backscattering spectra are solved and studied in both cases that are for the plane wave laser field without and with applied external constant magnetic field. Some unclear points appeared in previous work are clarified. The extension of the method to a general situation for the laser field with an arbitrary polarization is discussed. We also make a simple analysis and discussion about the optimal spectra dependence of field parameters and its implication to practical applications.
基金supported by the National Natural Science Foundation of China(Grant Nos 50676046 and 50730006)
文摘The in-plane electrical and thermal conductivities of several polycrystalline platinum and gold nanofilms with different thicknesses are measured in a temperature range between the boiling point of liquid nitrogen (77K) and room temperature by using the direct current heating method. The result shows that both the electrical and thermal conductivities of the nanofilms reduce greatly compared with their corresponding bulk values. However, the electrical conductivity drop is considerably greater than the thermal conductivity drop, which indicates that the influence of the internal grain boundary on heat transport is different from that of charge transport, hence leading to the violation of the Wiedemann-Franz law. We build an electron relaxation model based on Matthiessen's rule to analyse the thermal conductivity and employ the Mayadas & Shatzkes theory to analyse the electrical conductivity. Moreover, a modified Wiedemann-Franz law is provided in this paper, the obtained results from which are in good agreement with the experimental data.
文摘We present a method to characterize lysozyme pre-crystalline aggregates using a forward-light-scattering technique, which is highly sensitive to protein aggregates. The static light scattering properties at small angles of crystallizing lysozyme aggregates are discussed, and related to the crystallization conditions based on the concentration of added precipitant NaCl. Lysozyme solutions that started to crystallize because of precipitant exhibited profiles of forward light scattering that could be fitted by non-integer power laws, which indicated fractal aggregations of lysozyme had formed. Pre-crystalline solutions, in which lysozyme crystals later grew, had dense structural fractal clusters with fractal dimensions of D > 1.5. In contrast, solutions with aggregates in which crystals did not grow, had forward-light-scattering profiles that deviated from a power law or had lower power values.
基金National Natural Science Foundation of China Under Grant No. 50178065
文摘In numerical simulation of wave scattering under oblique incident body waves using the finite element method, the free field motion at the incident lateral boundary induced by the background layered half-space complicates the computational area. In order to replace the complex frequency domain method, a time-domain method to calculate the free field motion of a layered half-space subjected to oblique incident body waves is developed in this paper. The new method decouples the equations of motion used in the finite element method and offers an interpolation formula of the free field motion. This formula is based on the fact that the apparent horizontal velocity of the free field motion is constant and can be calculated exactly. Both the theoretical analysis and numerical results demonstrate that the proposed method offers a high degree of accuracy.
基金supported in part by the National Natural Science Foundation of China (Nos. 41606081, 4152 7809, and 41330965)in part by the Opening Fund of Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. QNLM2016ORP0209)in part by the Taishan Scholar Project Funding (No. tspd20161007)
文摘A method of obtaining bottom backscattering strength by employing an omnidirectional projector and omnidirectional hydrophone is proposed. The backscattering strength is extracted from monostatic backscattering data. The method was adopted in an experiment conducted in the South Yellow Sea of China. The seafloor surface was relatively smooth and covered by a small quantity of shell fragments, as observed through a digital camera system. Sampling data showed that the main component of the sediment at this experimental site was fine sand. In this paper, we detail the calculation method. Preliminary results of backscattering strength as a function of grazing angle(20?–70?) in the frequency range of 6–24 kHz are presented. The measured backscattering strength increased with the grazing angle and changed more rapidly at large grazing angles(60?–70?). A comparison of the data at different frequencies reveals that the measured backscattering strength substantially rises with the increase of acoustic frequency. A fitting curve of Lambert's law against the measured data shows that the backscattering strength deviates from Lambert's law at large grazing angles.
文摘According to Bradford’s law of scattering,this article makes a statistical analysis of the core and general journals of the library of Chongqing Medical University so as to make its journal holdings more rational.