By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser be...By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.展开更多
We demonstrated a 2-μm passively mode-locked nanosecond fiber laser based on a MoS2 saturable absorber(SA).Owing to the effect of nonlinear absorption in the MoS2 SA, the pulse width decreased from 64.7 to 13.8 ns ...We demonstrated a 2-μm passively mode-locked nanosecond fiber laser based on a MoS2 saturable absorber(SA).Owing to the effect of nonlinear absorption in the MoS2 SA, the pulse width decreased from 64.7 to 13.8 ns with increasing pump power from 1.10 to 1.45 W. The use of a narrow-bandwidth fiber Bragg grating resulted in a central wavelength and 3-dB spectral bandwidth of 2010.16 and 0.15 nm, respectively. Experimental results show that MoS2 is a promising material for a 2-μm mode-locked fiber laser.展开更多
We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs) and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam ho...We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs) and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2μm Tm-doped CW and mode locked fiber lasers, respectively.展开更多
Several high-performance and tunable erbium-doped fiber lasers are reviewed. They are constructed by using fiber Bragg gratings (FBGs) or short-wavelength-pass filters (SWPFs) as wavelength tunable components inside t...Several high-performance and tunable erbium-doped fiber lasers are reviewed. They are constructed by using fiber Bragg gratings (FBGs) or short-wavelength-pass filters (SWPFs) as wavelength tunable components inside the laser cavity. Broadband wavelength tuning range including C- and/or S-band was achieved, and tunable laser output with high slope efficiency, high side-mode suppression ratio was obtained. These fiber lasers can find vast applications in lightwave transmission, optical test instrument, fiber-optic gyros, spectroscopy, material processing, biophotonic imaging, and fiber sensor technologies.展开更多
A self-seeded fiber laser incorporated with a fiber Bragg grating external cavity semiconductor laser (FBG-ECL) and a Mach-Zehnder interferometer (MZI) were reported in this paper. The MZI provided a Q-switching with ...A self-seeded fiber laser incorporated with a fiber Bragg grating external cavity semiconductor laser (FBG-ECL) and a Mach-Zehnder interferometer (MZI) were reported in this paper. The MZI provided a Q-switching with response time in the order of micro-seconds. The FBG-ECL provided narrow pulses as seeds to shorten the Q-switched pulses. Experimentally, pulse width of 0.8 μs was measured, which was one fifth of the pulse width without self-seeding.展开更多
Effects of facet reflectivity of a laser diode on the performance of fiber Bragg grating semiconductor lasers are studied experimentally. Facet reflectivity of less than 10-4 is necessary to obtain stable oscillation ...Effects of facet reflectivity of a laser diode on the performance of fiber Bragg grating semiconductor lasers are studied experimentally. Facet reflectivity of less than 10-4 is necessary to obtain stable oscillation wavelength.展开更多
In this paper, we proposed a way to realize an Er-doped random fiber laser(RFL) with a disordered fiber Bragg grating(FBG) array, as well as to control the lasing mode of the RFL by heating specific locations of the d...In this paper, we proposed a way to realize an Er-doped random fiber laser(RFL) with a disordered fiber Bragg grating(FBG) array, as well as to control the lasing mode of the RFL by heating specific locations of the disordered FBG array. The disordered FBG array performs as both the gain medium and random distributed reflectors, which together with a tunable point reflector form the RFL. Coherent multi-mode random lasing is obtained with a threshold of between 7.5 and 10 mW and a power efficiency between 23% and 27% when the reflectivity of the point reflector changes from 4% to 50%. To control the lasing mode of random emission, a specific point of the disordered FBG array is heated so as to shift the wavelength of the FBG(s) at this point away from the other FBGs.Thus, different resonance cavities are formed, and the lasing mode can be controlled by changing the location of the heating point.展开更多
Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasi...Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasing presents an optical signal-to-noise ratio of 50 dB and temperature sensitivity coefficient of 15.36 pm∕℃ for the heating process and 15.46 pm∕℃ for the cooling process. The lasing wavelength variation and power fluctuation at 700℃ are less than 0.02 nm and 0.21 dB, respectively. The RFBG-based fiber laser sensing has displayed good linearity for both the temperature rising and cooling processes, and favorable stability at high temperatures.展开更多
Using a fiber Bragg grating (FBG) and a Fabry-Perot cavity composed of two fiber Bragg gratings (FBGFP) as its frequency-selective components, a type of single frequency all-fiber ring laser permits oscillation only o...Using a fiber Bragg grating (FBG) and a Fabry-Perot cavity composed of two fiber Bragg gratings (FBGFP) as its frequency-selective components, a type of single frequency all-fiber ring laser permits oscillation only on one longitudinal mode of the main cavity without modehopping while the cavity length can be up to tens of meters. The salient feature is due to the single narrowband resonance of the FBGFP filter. Such a fiber ring laser is achieved experimentally, and the laser mode is limited inside the single resonance of the FBGFP.展开更多
A wavelength-swept fiber laser is proposed and successfully demonstrated based on a bidirectional used linear chirped fiber Bragg grating(LC-FBG). The wavelength-swept operation principle is based on intracavity pulse...A wavelength-swept fiber laser is proposed and successfully demonstrated based on a bidirectional used linear chirped fiber Bragg grating(LC-FBG). The wavelength-swept operation principle is based on intracavity pulse stretching and compression. The LC-FBG can introduce equivalent positive and negative dispersion simultaneously, which enables a perfect dispersion matching to obtain wide-bandwidth mode-locking. Experimental results demonstrate a wavelength-swept fiber laser that exhibits a sweep rate of about 5.4 MHz over a 2.1 nm range at a center wavelength of 1550 nm. It has the advantages of simple configuration and perfect dispersion matching in the laser cavity.展开更多
A method to fabricate fiber Bragg grating (FBG) in an optical microfiber (OM) from a conventional photosensitive fiber is proposed in this letter. The cladding of a conventional photosensitive fiber is etched to 1...A method to fabricate fiber Bragg grating (FBG) in an optical microfiber (OM) from a conventional photosensitive fiber is proposed in this letter. The cladding of a conventional photosensitive fiber is etched to 17 pro. The etched fiber is drawn to an OM 6μm in diameter. The photosensitivity of the fabricated OM is effectively reserved. A FBG in the OM (MFBG) is successfully fabricated using a KrF excimer laser at a fluence of 400 mJ/cm2 through a phase mask with a pitch of 1 089.3 nm. The reflectivity of the FBG is approximately 10%, and the 3-dB spectrum bandwidth is 0.13 nm. The concentration of brine is measured by immersing the MFBG in the liquid, and the minimum detectable refractive index variation can reach 7.2×10^-5 at a refractive index value of 1.33.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474257 and 61605183
文摘By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.
基金Project supported by the National Natural Science Foundation of China(Grant No.11304409)the Natural Science Foundation of Chongqing City,China(Grant No.CSTC2013jcyj A4004)+1 种基金the Scientific and Technological Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ1500422)the Special Theme Projects on LCD Industrial Generic Technology Innovation of Chongqing City,China(Grant No.CSTC2015zdcyztzx40003)
文摘We demonstrated a 2-μm passively mode-locked nanosecond fiber laser based on a MoS2 saturable absorber(SA).Owing to the effect of nonlinear absorption in the MoS2 SA, the pulse width decreased from 64.7 to 13.8 ns with increasing pump power from 1.10 to 1.45 W. The use of a narrow-bandwidth fiber Bragg grating resulted in a central wavelength and 3-dB spectral bandwidth of 2010.16 and 0.15 nm, respectively. Experimental results show that MoS2 is a promising material for a 2-μm mode-locked fiber laser.
文摘We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs) and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2μm Tm-doped CW and mode locked fiber lasers, respectively.
文摘Several high-performance and tunable erbium-doped fiber lasers are reviewed. They are constructed by using fiber Bragg gratings (FBGs) or short-wavelength-pass filters (SWPFs) as wavelength tunable components inside the laser cavity. Broadband wavelength tuning range including C- and/or S-band was achieved, and tunable laser output with high slope efficiency, high side-mode suppression ratio was obtained. These fiber lasers can find vast applications in lightwave transmission, optical test instrument, fiber-optic gyros, spectroscopy, material processing, biophotonic imaging, and fiber sensor technologies.
文摘A self-seeded fiber laser incorporated with a fiber Bragg grating external cavity semiconductor laser (FBG-ECL) and a Mach-Zehnder interferometer (MZI) were reported in this paper. The MZI provided a Q-switching with response time in the order of micro-seconds. The FBG-ECL provided narrow pulses as seeds to shorten the Q-switched pulses. Experimentally, pulse width of 0.8 μs was measured, which was one fifth of the pulse width without self-seeding.
文摘Effects of facet reflectivity of a laser diode on the performance of fiber Bragg grating semiconductor lasers are studied experimentally. Facet reflectivity of less than 10-4 is necessary to obtain stable oscillation wavelength.
基金supported in part by the National Natural Science Foundation of China under Grants 61575040 and 61106045the PCSIRT under Grant IRT1218+1 种基金the 111 Project under Grant B14039the open research fund of Jiangsu Key Laboratory for Advanced Optical Manufacturing Technologies under Grant KJS1402
文摘In this paper, we proposed a way to realize an Er-doped random fiber laser(RFL) with a disordered fiber Bragg grating(FBG) array, as well as to control the lasing mode of the RFL by heating specific locations of the disordered FBG array. The disordered FBG array performs as both the gain medium and random distributed reflectors, which together with a tunable point reflector form the RFL. Coherent multi-mode random lasing is obtained with a threshold of between 7.5 and 10 mW and a power efficiency between 23% and 27% when the reflectivity of the point reflector changes from 4% to 50%. To control the lasing mode of random emission, a specific point of the disordered FBG array is heated so as to shift the wavelength of the FBG(s) at this point away from the other FBGs.Thus, different resonance cavities are formed, and the lasing mode can be controlled by changing the location of the heating point.
基金supported by the Beijing Outstanding Talent Training Funded Project(No.2015000020124G074)the 111 Project(No.D17021)the Changjiang Scholars and Innovative Research Team in University(No.IRT_16R07)
文摘Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasing presents an optical signal-to-noise ratio of 50 dB and temperature sensitivity coefficient of 15.36 pm∕℃ for the heating process and 15.46 pm∕℃ for the cooling process. The lasing wavelength variation and power fluctuation at 700℃ are less than 0.02 nm and 0.21 dB, respectively. The RFBG-based fiber laser sensing has displayed good linearity for both the temperature rising and cooling processes, and favorable stability at high temperatures.
基金This work was supported by National Science Fund for Distinguished Young Scholars of China (Project 60125513)the Jiangsu Province Natural Science Foundation of China (No. BK2004207).
文摘Using a fiber Bragg grating (FBG) and a Fabry-Perot cavity composed of two fiber Bragg gratings (FBGFP) as its frequency-selective components, a type of single frequency all-fiber ring laser permits oscillation only on one longitudinal mode of the main cavity without modehopping while the cavity length can be up to tens of meters. The salient feature is due to the single narrowband resonance of the FBGFP filter. Such a fiber ring laser is achieved experimentally, and the laser mode is limited inside the single resonance of the FBGFP.
基金National Natural Science Foundation of China(NSFC)(61475065)Natural Science Foundation of Guangdong Province(2015A030313322)
文摘A wavelength-swept fiber laser is proposed and successfully demonstrated based on a bidirectional used linear chirped fiber Bragg grating(LC-FBG). The wavelength-swept operation principle is based on intracavity pulse stretching and compression. The LC-FBG can introduce equivalent positive and negative dispersion simultaneously, which enables a perfect dispersion matching to obtain wide-bandwidth mode-locking. Experimental results demonstrate a wavelength-swept fiber laser that exhibits a sweep rate of about 5.4 MHz over a 2.1 nm range at a center wavelength of 1550 nm. It has the advantages of simple configuration and perfect dispersion matching in the laser cavity.
文摘A method to fabricate fiber Bragg grating (FBG) in an optical microfiber (OM) from a conventional photosensitive fiber is proposed in this letter. The cladding of a conventional photosensitive fiber is etched to 17 pro. The etched fiber is drawn to an OM 6μm in diameter. The photosensitivity of the fabricated OM is effectively reserved. A FBG in the OM (MFBG) is successfully fabricated using a KrF excimer laser at a fluence of 400 mJ/cm2 through a phase mask with a pitch of 1 089.3 nm. The reflectivity of the FBG is approximately 10%, and the 3-dB spectrum bandwidth is 0.13 nm. The concentration of brine is measured by immersing the MFBG in the liquid, and the minimum detectable refractive index variation can reach 7.2×10^-5 at a refractive index value of 1.33.