An integratable distributed Bragg reflector laser is fabricated by low energy ion implantation induced quantum well intermixing.A 4 6nm quasi continuous wavelength tuning range is achieved by controlling phase curr...An integratable distributed Bragg reflector laser is fabricated by low energy ion implantation induced quantum well intermixing.A 4 6nm quasi continuous wavelength tuning range is achieved by controlling phase current and grating current simultaneously,and side mode suppression ratio maintains over 30dB throughout the tuning range except a few mode jump points.展开更多
The wet oxidation of AlGaAs with high Al content in a distributed Bragg reflectors (DBR) is studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Some voids distribute along t...The wet oxidation of AlGaAs with high Al content in a distributed Bragg reflectors (DBR) is studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Some voids distribute along the oxide/GaAs interfaces due to the stress induced by the wet oxidation of the AlGaAs layers. These voids decrease the shrinkage of the Al2O3 layers to 8% instead of the theoretical 20% when compared to the unoxidized AlGaAs layers. With the extension of oxidation time, the reactants are more completely transported to the front interface and the products are more completely transported out along the porous interfaces. As a result,the oxide quality is better.展开更多
We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase sec...We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.展开更多
We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a pa...We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photolumineseence (PL) intensity is very sensitive to the size of metMlic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.展开更多
Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) fi...Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) films at 800 C.The dc bias-dependent resonance may be attributed to the piezoelectricity of the BST film induced by an electrostrictive effect.The series resonant frequency is strongly dc bias-dependent and shifts downwards with dc bias increasing,while the parallel resonant frequency is only weakly dc bias-dependent and slightly shifts upwards at low dc bias( 45 V) while downwards at higher dc bias.The calculated relative tunability of shifts at series resonance frequency is around 2.3% and the electromechanical coupling coefficient is up to approximately 8.09% at 60-V dc bias,which can be comparable to AlN FBARs.This suggests that a high-quality tunable BST FBAR device can be achieved through the use of molybdenum(Mo) as the high acoustic impedance layer in a Bragg reflector,which not only provides excellent acoustic isolation from the substrate,but also improves the crystallinity of BST films withstanding higher deposition temperature.展开更多
Planar Bragg reflector operating in the sub-terahertz wavelength installed at the upstream end of a sheet beam back- ward wave oscillator (BWO) is very promising to minimize the whole circuit structure and make it m...Planar Bragg reflector operating in the sub-terahertz wavelength installed at the upstream end of a sheet beam back- ward wave oscillator (BWO) is very promising to minimize the whole circuit structure and make it more compact. In this paper, a sub-terahertz wavelength (0.18-0.22 THz) tunable planar Bragg reflector is numerically analyzed by using multi-mode coupling theory (MCT). The operating mode TE10 and dominant coupling mode TE01 are mainly considered in this theory. Reflection and transmission performance of the reflector are demonstrated in detail and the results, in excellent agreement with the theoretical analysis and simulation, are also presented in this paper. Self- and cross-coupling coefficients between these two modes are presented as well. The reflector behaviors with different Bragg dimensions are discussed and analyzed in the 0.16-0.22 THz range. The analysis in this paper can be of benefit to the design and fabrication of the whole BWO circuit.展开更多
The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers o...The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers of both the p-and n-DBR mirrors are analysed by combining the thermionic emission model and the finite difference method.In the meantime,the intrinsic resistance of the DBR material system is calculated to make a comparison with the junction resistance.The minimal values of series resistances of the graded p-and n-type DBR mirrors and the lateral temperature-dependent resistance variation are calculated and discussed.The result indicates the potential to optimize the design of the DBR reflectors of the 980-nm VCSELs.展开更多
A 1040 nm tapered laser with tapered distributed Bragg reflector(DBR) grating is designed and fabricated. By designing the grating with tapered layout, the tapered DBR grating exhibits the scattering effect on side ba...A 1040 nm tapered laser with tapered distributed Bragg reflector(DBR) grating is designed and fabricated. By designing the grating with tapered layout, the tapered DBR grating exhibits the scattering effect on side backward-traveling waves, thus achieving additional suppression of parasitic oscillation. Under the suppression of parasitic oscillation, the spatial and spectral characteristics of the tapered laser are improved. The experimental results show that a near-Gaussian far-field distribution and a kink-free P–I characteristics are achieved, and a single peak emission with a wavelength of1046.84 nm and a linewidth of 56 pm is obtained.展开更多
New types of Bragg reflectors, multilayered periodic structures, based on alternating left-handed transmission line (LHTL) and right-handed transmission line (RHTL) are proposed. These new structures based on ideal mi...New types of Bragg reflectors, multilayered periodic structures, based on alternating left-handed transmission line (LHTL) and right-handed transmission line (RHTL) are proposed. These new structures based on ideal microstrip TLs and L-C lumped elements, are designed and analyzed. We report on unusual narrow transmission bands in such kind of structures. In such multilayered structures both Bragg reflectance and the Fabry-Perot resonance exist and the phenomenon of unusual transmission is a result of competition between these two transmission effects, in which the Fabry-Perot resonance is dominant. According to our simulation results we find that this unusual transmission property exits no matter if the electrical length of the LHTL layer cancels the electrical length of the RHTL layer or not.展开更多
In this paper,a solidly mounted resonator(SMR)was designed with nanocrystalline diamond(NCD)as the high acoustic impedance material of Bragg reflector to improve the quality.We used Mathcad to investigate the effect o...In this paper,a solidly mounted resonator(SMR)was designed with nanocrystalline diamond(NCD)as the high acoustic impedance material of Bragg reflector to improve the quality.We used Mathcad to investigate the effect of the Bragg reflector on the performance of the SMR,as well as the influence of different materials and the number of layers of Bragg reflector on the quality factor Q.Results show that the Bragg reflector could reduce energy loss effectively,and the higher the impedance of the high acoustic impedance layer,the better the SMR.The parasitic factors of the SMR using two high acoustic impedance materials,tungsten(W)and NCD,were also simulated by an Advanced Design System(ADS)using the Mason model.It was found that the parasitic effect caused by metal would significantly decrease the Q factor of the SMR.In the frequency range below 6 GHz,within which the SMR works normally,NCD performed better than W.Therefore,NCD is a better choice of high acoustic impedance material in the design of the SMR,with improved quality at high frequency and low loss.The optimum number of layers of Bragg reflector is 6.展开更多
Spectral and structural characteristics of distributed Bragg reflector (DBR) in vertical-cavity surface-emitting lasers were studied with photoluminescence and double-crystal X-ray diffraction measurement.The expected...Spectral and structural characteristics of distributed Bragg reflector (DBR) in vertical-cavity surface-emitting lasers were studied with photoluminescence and double-crystal X-ray diffraction measurement.The expected high quality epitaxial DBR structure was verified.In the X-ray double-crystal rocking curves of DBR the zeroth-order peak,the first and second order satellite peaks were measured.Splitting of diffraction peak appeared in the rocking curves was analyzed.The effects of introduced deep energy levels on the structural perfection and optical properties were discussed.展开更多
A new design for an all optical flip flop is introduced. It is based on a nonlinear Distributed Bragg Reflector (DBR) semiconductor laser structure. The device does not require a holding beam. An optical gain medium c...A new design for an all optical flip flop is introduced. It is based on a nonlinear Distributed Bragg Reflector (DBR) semiconductor laser structure. The device does not require a holding beam. An optical gain medium confined between 2 Bragg reflectors forms the device. One of the Bragg reflectors is detuned from the other by making its average refractive index slightly higher, and it has a negative nonlinear coefficient that is due to direct absorption at Urbach tail. At low light intensity in the structure, the detuned Bragg reflector does not provide optical feedback to start a laser mode. An optical pulse injected to the structure reduces the detuning of the nonlinear Bragg reflector and a laser mode builds up. The device is reset by detuning the second Bragg reflector optically by an optical pulse that generates electron-hole pairs by direct absorption. A mathematical model of the device is introduced. The model is solved numerically in time domain using a general purpose graphics processing unit (GPGPU) to increase accuracy and to reduce the computation time. The switching dynamics of the device are in nanosecond time scale. The device could be used for all optical data packet switching/routing.展开更多
Plasmonic Bragg reflectors are essential components in plasmonic circuits.Here we propose a novel type of plasmonic Bragg reflector, which has very high reflectance for the right-side incidence and meanwhile has extre...Plasmonic Bragg reflectors are essential components in plasmonic circuits.Here we propose a novel type of plasmonic Bragg reflector, which has very high reflectance for the right-side incidence and meanwhile has extremely large absorption for the left-side incidence.This device is composed of longitudinally asymmetric nanostructures in a metal–insulator–metal waveguide.In order to efficiently analyze, design, and optimize the reflection and transmission characteristics of the proposed device, we develop a semi-analytic coupled-mode model.Results show that the reflectance extinction ratio between plasmonic modes incident from the right-side and the left-side reaches 11 dB.We expect this device with such striking unidirectional reflection performance can be used as insulators in nanoplasmonic circuits.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
We report a 1.8 μm two-section distributed Bragg reflector laser using butt-jointed InGaAsP bulk material as the waveguide core layer. The threshold current is 17 mA and the output power is 8 mW on average. The thres...We report a 1.8 μm two-section distributed Bragg reflector laser using butt-jointed InGaAsP bulk material as the waveguide core layer. The threshold current is 17 mA and the output power is 8 mW on average. The threshold current, output power, and emitting wavelength dependences on temperature are measured. The obtained wave- length tuning range is 10 nm. This device has potential applications in simultaneous multiple-gas detection.展开更多
A terahertz excitation source based on a dual-lateral-mode distributed Bragg reflector (DBR) laser working in the 1.5 μm range is experimentally demonstrated. By optimizing the width of the ridge waveguide, the fun...A terahertz excitation source based on a dual-lateral-mode distributed Bragg reflector (DBR) laser working in the 1.5 μm range is experimentally demonstrated. By optimizing the width of the ridge waveguide, the fundamental and the first-order lateral modes are obtained from the laser. The mode spacing between the two modes is 9.68 nm, corresponding to a beat signal of 1.21 THz. By tuning the bias currents of the phase and DBR sections, the wavelengths of the two modes can be tuned by 2 nm, with a small strength difference (〈5 dB) and a large side-mode suppression ratio (SMSR 〉 45 dB).展开更多
A Q-switched distributed Bragg reflector fiber laser using a graphene passive saturable absorber is proposed in a cavity consisting of a fiber Bragg grating and Faraday rotator mirror as end mirrors, together with a h...A Q-switched distributed Bragg reflector fiber laser using a graphene passive saturable absorber is proposed in a cavity consisting of a fiber Bragg grating and Faraday rotator mirror as end mirrors, together with a highly doped erbium-doped fiber as a gain source. The laser has a Q-switched threshold of about 28 mW and a tunable repetition rate of 10.4-18.0 kHz with varying pump power. The shortest pulse width obtained from the system is 3.7 its, with a maximum pulse energy and peak power of 22.2 nJ and 3.4 mW, respectively.展开更多
A frequency and wavelength tunable self-pulsation laser based on DBR laser devices is reported for the first time.This laser generates continuous tunable optical microwave in the range of 1.87-21.81 GHz with 3-dB line...A frequency and wavelength tunable self-pulsation laser based on DBR laser devices is reported for the first time.This laser generates continuous tunable optical microwave in the range of 1.87-21.81 GHz with 3-dB linewidth about 10 MHz by tuning the injection currents on the front and back gain sections,and exhibits wavelength tuning range from 1536.28 to 1538.73 nm by tuning the injection currents on the grating section.展开更多
We report holographic fabrication of nanoporous distributed Bragg reflector(DBR) films with periodic nanoscale porosity via a single-prism conuration. The nanoporous DBR films result from the phase separation in a mat...We report holographic fabrication of nanoporous distributed Bragg reflector(DBR) films with periodic nanoscale porosity via a single-prism conuration. The nanoporous DBR films result from the phase separation in a material recipe, which consists of a polymerizable acrylate monomer and nonreactive volatile solvent. By changing the interfering angle of two laser beams, we achieve the nanoporous DBR films with highly reflective red,green, and blue colors. The reflection band of the nanoporous DBR films can be tuned by further filling different liquids into the pores inside the films, resulting in the color change accordingly. Experimental results show that such kinds of nanoporous DBR films could be potentially useful for many applications, such as color filters and refractive index sensors.展开更多
In this Letter, the surface-enhanced Raman scattering(SERS) signal of early breast cancer(BRC) patient serum is obtained by a composite silver nanoparticles(Ag NPs) PSi Bragg reflector SERS substrate. Based on these a...In this Letter, the surface-enhanced Raman scattering(SERS) signal of early breast cancer(BRC) patient serum is obtained by a composite silver nanoparticles(Ag NPs) PSi Bragg reflector SERS substrate. Based on these advantages, the serum SERS signals of 30 normal people and 30 early BRC patients were detected by this substrate. After a baseline correction of the experimental data, principal component analysis and linear discriminant analysis were used to complete the data processing. The results showed that the diagnostic accuracy, specificity,and sensitivity of the composite Ag NPs PSi Bragg reflector SERS substrate were 95%, 96.7%, and 93.3%, respectively. The results of this exploratory study prove that the detection of early BRC serum based on a composite Ag NPs PSi Bragg reflector SERS substrate is with a stable strong SERS signal, and an unmarked and noninvasive BRC diagnosis technology. In the future, this technology can serve as a noninvasive clinical tool to detect cancer diseases and have a considerable impact on clinical medical detection.展开更多
文摘An integratable distributed Bragg reflector laser is fabricated by low energy ion implantation induced quantum well intermixing.A 4 6nm quasi continuous wavelength tuning range is achieved by controlling phase current and grating current simultaneously,and side mode suppression ratio maintains over 30dB throughout the tuning range except a few mode jump points.
文摘The wet oxidation of AlGaAs with high Al content in a distributed Bragg reflectors (DBR) is studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Some voids distribute along the oxide/GaAs interfaces due to the stress induced by the wet oxidation of the AlGaAs layers. These voids decrease the shrinkage of the Al2O3 layers to 8% instead of the theoretical 20% when compared to the unoxidized AlGaAs layers. With the extension of oxidation time, the reactants are more completely transported to the front interface and the products are more completely transported out along the porous interfaces. As a result,the oxide quality is better.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60736036 and 61021003)the National Basic Research Program of China (Grant No. 2011CB301702)
文摘We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275 and 11464034
文摘We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photolumineseence (PL) intensity is very sensitive to the size of metMlic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60871049 and 50972024)
文摘Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) films at 800 C.The dc bias-dependent resonance may be attributed to the piezoelectricity of the BST film induced by an electrostrictive effect.The series resonant frequency is strongly dc bias-dependent and shifts downwards with dc bias increasing,while the parallel resonant frequency is only weakly dc bias-dependent and slightly shifts upwards at low dc bias( 45 V) while downwards at higher dc bias.The calculated relative tunability of shifts at series resonance frequency is around 2.3% and the electromechanical coupling coefficient is up to approximately 8.09% at 60-V dc bias,which can be comparable to AlN FBARs.This suggests that a high-quality tunable BST FBAR device can be achieved through the use of molybdenum(Mo) as the high acoustic impedance layer in a Bragg reflector,which not only provides excellent acoustic isolation from the substrate,but also improves the crystallinity of BST films withstanding higher deposition temperature.
基金supported by the National Natural Science Foundation of China(Grant No.G0501040161101040)
文摘Planar Bragg reflector operating in the sub-terahertz wavelength installed at the upstream end of a sheet beam back- ward wave oscillator (BWO) is very promising to minimize the whole circuit structure and make it more compact. In this paper, a sub-terahertz wavelength (0.18-0.22 THz) tunable planar Bragg reflector is numerically analyzed by using multi-mode coupling theory (MCT). The operating mode TE10 and dominant coupling mode TE01 are mainly considered in this theory. Reflection and transmission performance of the reflector are demonstrated in detail and the results, in excellent agreement with the theoretical analysis and simulation, are also presented in this paper. Self- and cross-coupling coefficients between these two modes are presented as well. The reflector behaviors with different Bragg dimensions are discussed and analyzed in the 0.16-0.22 THz range. The analysis in this paper can be of benefit to the design and fabrication of the whole BWO circuit.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974012)
文摘The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers of both the p-and n-DBR mirrors are analysed by combining the thermionic emission model and the finite difference method.In the meantime,the intrinsic resistance of the DBR material system is calculated to make a comparison with the junction resistance.The minimal values of series resistances of the graded p-and n-type DBR mirrors and the lateral temperature-dependent resistance variation are calculated and discussed.The result indicates the potential to optimize the design of the DBR reflectors of the 980-nm VCSELs.
基金Project supported by Jilin Science and Technology Development Plan,China(Grant Nos.20210201030GX and 20190302052GX)。
文摘A 1040 nm tapered laser with tapered distributed Bragg reflector(DBR) grating is designed and fabricated. By designing the grating with tapered layout, the tapered DBR grating exhibits the scattering effect on side backward-traveling waves, thus achieving additional suppression of parasitic oscillation. Under the suppression of parasitic oscillation, the spatial and spectral characteristics of the tapered laser are improved. The experimental results show that a near-Gaussian far-field distribution and a kink-free P–I characteristics are achieved, and a single peak emission with a wavelength of1046.84 nm and a linewidth of 56 pm is obtained.
基金Project (No. 2004CB719802) supported by the National Basic Re-search Program (973) of China
文摘New types of Bragg reflectors, multilayered periodic structures, based on alternating left-handed transmission line (LHTL) and right-handed transmission line (RHTL) are proposed. These new structures based on ideal microstrip TLs and L-C lumped elements, are designed and analyzed. We report on unusual narrow transmission bands in such kind of structures. In such multilayered structures both Bragg reflectance and the Fabry-Perot resonance exist and the phenomenon of unusual transmission is a result of competition between these two transmission effects, in which the Fabry-Perot resonance is dominant. According to our simulation results we find that this unusual transmission property exits no matter if the electrical length of the LHTL layer cancels the electrical length of the RHTL layer or not.
基金Sponsored by the National Science Fund for Distinguished Young Scholars(Grant No.51625201)the National Natural Science Foundation of China(Grant No.51702066).
文摘In this paper,a solidly mounted resonator(SMR)was designed with nanocrystalline diamond(NCD)as the high acoustic impedance material of Bragg reflector to improve the quality.We used Mathcad to investigate the effect of the Bragg reflector on the performance of the SMR,as well as the influence of different materials and the number of layers of Bragg reflector on the quality factor Q.Results show that the Bragg reflector could reduce energy loss effectively,and the higher the impedance of the high acoustic impedance layer,the better the SMR.The parasitic factors of the SMR using two high acoustic impedance materials,tungsten(W)and NCD,were also simulated by an Advanced Design System(ADS)using the Mason model.It was found that the parasitic effect caused by metal would significantly decrease the Q factor of the SMR.In the frequency range below 6 GHz,within which the SMR works normally,NCD performed better than W.Therefore,NCD is a better choice of high acoustic impedance material in the design of the SMR,with improved quality at high frequency and low loss.The optimum number of layers of Bragg reflector is 6.
文摘Spectral and structural characteristics of distributed Bragg reflector (DBR) in vertical-cavity surface-emitting lasers were studied with photoluminescence and double-crystal X-ray diffraction measurement.The expected high quality epitaxial DBR structure was verified.In the X-ray double-crystal rocking curves of DBR the zeroth-order peak,the first and second order satellite peaks were measured.Splitting of diffraction peak appeared in the rocking curves was analyzed.The effects of introduced deep energy levels on the structural perfection and optical properties were discussed.
文摘A new design for an all optical flip flop is introduced. It is based on a nonlinear Distributed Bragg Reflector (DBR) semiconductor laser structure. The device does not require a holding beam. An optical gain medium confined between 2 Bragg reflectors forms the device. One of the Bragg reflectors is detuned from the other by making its average refractive index slightly higher, and it has a negative nonlinear coefficient that is due to direct absorption at Urbach tail. At low light intensity in the structure, the detuned Bragg reflector does not provide optical feedback to start a laser mode. An optical pulse injected to the structure reduces the detuning of the nonlinear Bragg reflector and a laser mode builds up. The device is reset by detuning the second Bragg reflector optically by an optical pulse that generates electron-hole pairs by direct absorption. A mathematical model of the device is introduced. The model is solved numerically in time domain using a general purpose graphics processing unit (GPGPU) to increase accuracy and to reduce the computation time. The switching dynamics of the device are in nanosecond time scale. The device could be used for all optical data packet switching/routing.
基金Project supported by the Shenzhen Research Foundation,China(Grant Nos.JCYJ20160608153308846,JSGG20170822093953679,and JCYJ20180507182444250)the National Key Research and Development Program of China(Grant No.2017YFC0803506)+1 种基金the National Natural Science Foundation of China(Grant Nos.61261033 and 61162007)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.20160320)
文摘Plasmonic Bragg reflectors are essential components in plasmonic circuits.Here we propose a novel type of plasmonic Bragg reflector, which has very high reflectance for the right-side incidence and meanwhile has extremely large absorption for the left-side incidence.This device is composed of longitudinally asymmetric nanostructures in a metal–insulator–metal waveguide.In order to efficiently analyze, design, and optimize the reflection and transmission characteristics of the proposed device, we develop a semi-analytic coupled-mode model.Results show that the reflectance extinction ratio between plasmonic modes incident from the right-side and the left-side reaches 11 dB.We expect this device with such striking unidirectional reflection performance can be used as insulators in nanoplasmonic circuits.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金supported by the National"863"Project of China under Grant No.2012AA012203
文摘We report a 1.8 μm two-section distributed Bragg reflector laser using butt-jointed InGaAsP bulk material as the waveguide core layer. The threshold current is 17 mA and the output power is 8 mW on average. The threshold current, output power, and emitting wavelength dependences on temperature are measured. The obtained wave- length tuning range is 10 nm. This device has potential applications in simultaneous multiple-gas detection.
基金supported by the National Natural Science Foundation of China (No. 61335009, 61274045, 61271066, 61321063)the National 973 Project of China (No. 2011CB301702)the National 863 Project of China (No. 2013AA014202)
文摘A terahertz excitation source based on a dual-lateral-mode distributed Bragg reflector (DBR) laser working in the 1.5 μm range is experimentally demonstrated. By optimizing the width of the ridge waveguide, the fundamental and the first-order lateral modes are obtained from the laser. The mode spacing between the two modes is 9.68 nm, corresponding to a beat signal of 1.21 THz. By tuning the bias currents of the phase and DBR sections, the wavelengths of the two modes can be tuned by 2 nm, with a small strength difference (〈5 dB) and a large side-mode suppression ratio (SMSR 〉 45 dB).
基金supported by the Ministry of Higher Education/University of Malaya(Nos.UM.C/HIR/MOHE/SC/01 and UPGP2012)
文摘A Q-switched distributed Bragg reflector fiber laser using a graphene passive saturable absorber is proposed in a cavity consisting of a fiber Bragg grating and Faraday rotator mirror as end mirrors, together with a highly doped erbium-doped fiber as a gain source. The laser has a Q-switched threshold of about 28 mW and a tunable repetition rate of 10.4-18.0 kHz with varying pump power. The shortest pulse width obtained from the system is 3.7 its, with a maximum pulse energy and peak power of 22.2 nJ and 3.4 mW, respectively.
基金Project supported by the National High Technology Research and Development Program of China(Nos.2006AA01Z256, 2007AA03Z419,2007AA03Z417)the State Key Development Program for Basic Research of China(Nos.2006CB604901, 2006CB604902)the National Natural Science Foundation of China(Nos.90401025,60736036,60706009,60777021).
文摘A frequency and wavelength tunable self-pulsation laser based on DBR laser devices is reported for the first time.This laser generates continuous tunable optical microwave in the range of 1.87-21.81 GHz with 3-dB linewidth about 10 MHz by tuning the injection currents on the front and back gain sections,and exhibits wavelength tuning range from 1536.28 to 1538.73 nm by tuning the injection currents on the grating section.
基金supported in part by the National Natural Science Foundation of China (No. 61805113)Natural Science Foundation of Guangdong Province(Nos. 2017A030313034 and 2018A030310224)+4 种基金Shenzhen Science and Technology Innovation Commission (Nos.JCYJ20180305180635082JCYJ20170817111349280GJHZ20180928155207206)Open Fund of State Key Laboratory of Applied Optics (No. SKLAO-201904)Guangdong Innovative and Entrepreneurial Research Team Program (No. 2017ZT07C071)。
文摘We report holographic fabrication of nanoporous distributed Bragg reflector(DBR) films with periodic nanoscale porosity via a single-prism conuration. The nanoporous DBR films result from the phase separation in a material recipe, which consists of a polymerizable acrylate monomer and nonreactive volatile solvent. By changing the interfering angle of two laser beams, we achieve the nanoporous DBR films with highly reflective red,green, and blue colors. The reflection band of the nanoporous DBR films can be tuned by further filling different liquids into the pores inside the films, resulting in the color change accordingly. Experimental results show that such kinds of nanoporous DBR films could be potentially useful for many applications, such as color filters and refractive index sensors.
基金the National Natural Science Foundation of China (Nos. 61665012,61575168,61765014)the International Science Cooperation Project of the Ministry of Education of the People’s Republic of China (No. 2016–2196)the Reserve Talents Project of National High-level Personnel of the Special Support Program (No. QN2016YX0324)。
文摘In this Letter, the surface-enhanced Raman scattering(SERS) signal of early breast cancer(BRC) patient serum is obtained by a composite silver nanoparticles(Ag NPs) PSi Bragg reflector SERS substrate. Based on these advantages, the serum SERS signals of 30 normal people and 30 early BRC patients were detected by this substrate. After a baseline correction of the experimental data, principal component analysis and linear discriminant analysis were used to complete the data processing. The results showed that the diagnostic accuracy, specificity,and sensitivity of the composite Ag NPs PSi Bragg reflector SERS substrate were 95%, 96.7%, and 93.3%, respectively. The results of this exploratory study prove that the detection of early BRC serum based on a composite Ag NPs PSi Bragg reflector SERS substrate is with a stable strong SERS signal, and an unmarked and noninvasive BRC diagnosis technology. In the future, this technology can serve as a noninvasive clinical tool to detect cancer diseases and have a considerable impact on clinical medical detection.