Radiation therapy is considered the most effective non-surgical treatment for brain tumors.However,there are no available treatments for radiation-induced brain injury.Bisdemethoxycurcumin(BDMC)is a demethoxy derivati...Radiation therapy is considered the most effective non-surgical treatment for brain tumors.However,there are no available treatments for radiation-induced brain injury.Bisdemethoxycurcumin(BDMC)is a demethoxy derivative of curcumin that has anti-proliferative,anti-inflammatory,and anti-oxidant properties.To determine whether BDMC has the potential to treat radiation-induced brain injury,in this study,we established a rat model of radiation-induced brain injury by administe ring a single 30-Gy vertical dose of irradiation to the whole brain,followed by intraperitoneal injection of 500μL of a 100 mg/kg BDMC solution every day for 5 successive weeks.Our res ults showed that BDMC increased the body weight of rats with radiation-induced brain injury,improved lea rning and memory,attenuated brain edema,inhibited astrocyte activation,and reduced oxidative stress.These findings suggest that BDMC protects against radiationinduced brain injury.展开更多
Recent studies have proposed three lymphatic drainage systems in the brain,that is,the glymphatic system,the intramural periarterial drainage pathway,and meningeal lymphatic vessels,whose roles in various neurological...Recent studies have proposed three lymphatic drainage systems in the brain,that is,the glymphatic system,the intramural periarterial drainage pathway,and meningeal lymphatic vessels,whose roles in various neurological diseases have been widely explored.The glymphatic system is a fluid drainage and waste clearance pathway that utilizes perivascular space and aquaporin-4 protein located in the astrocyte endfeet to provide a space for exchange of cerebrospinal fluid and interstitial fluid.The intramural periarterial drainage pathway drives the flow of interstitial fluid through the capillary basement membrane and the arterial tunica media.Meningeal lymphatic vessels within the dura mater are involved in the removal of cerebral macromolecules and immune responses.After ischemic stroke,impairment of these systems could lead to cerebral edema,accumulation of toxic factors,and activation of neuroinflammation,while restoration of their normal functions can improve neurological outcomes.In this review,we summarize the basic concepts of these drainage systems,including drainage routes,physiological functions,regulatory mechanisms,and detection technologies.We also focus on the roles of lymphatic drainage systems in brain injury after ischemic stroke,as well as recent advances in therapeutic strategies targeting these drainage systems.These findings provide information for potential novel strategies for treatment of stroke.展开更多
AIM:To study the blood-brain barrier integrity,brain edema, animal behavior and ammonia plasma levels in prehepatic portal hypertensive rats with and without acute liver intoxication. METHODS:Adults male Wistar rats w...AIM:To study the blood-brain barrier integrity,brain edema, animal behavior and ammonia plasma levels in prehepatic portal hypertensive rats with and without acute liver intoxication. METHODS:Adults male Wistar rats were divided into four groups.Group Ⅰ:sham operation;Ⅱ:Prehepatic portal hypertension,produced by partial portal vein ligation;Ⅲ: Acetaminophen intoxication and Ⅳ:Prehepatic portal hypertension plus acetaminophen.Acetaminophen was administered to produce acute hepatic injury.Portal pressure,liver serum enzymes and ammonia plasma levels were determined.Brain cortex water content was registered and trypan blue was utilized to study blood brain barrier integrity.Reflexes and behavioral tests were recorded. RESULTS:Portal hypertension was significantly elevated in groups Ⅱ and Ⅳ.Uver enzymes and ammonia plasma levels were increased in groups Ⅱ,Ⅲ and Ⅳ.Prehepatic portal hypertension (group Ⅱ),acetaminophen intoxication (group Ⅲ) and both (group Ⅳ) had changes in the blood brain-barrier integrity (trypan blue) and hyperammonemia.Cortical edema was present in rats with acute hepatic injury in groups Ⅲ and Ⅳ.Behavioral test (rota rod) was altered in group Ⅳ. CONCLUSION:These results suggest the possibility of another pathway for cortical edema production because blood brain barrier was altered (vasogenic) and hyperammonemia was registered (oltotoxic).Group Ⅳ,with behavioral altered test,can be considered as a model for study at an early stage of portal-systemic encephalopathy.展开更多
BACKGROUND:Previous studies have demonstrated that aquaporin-4 (AQP4) plays a key role in the formation and resolution of brain edema.However,the molecular mechanisms and role of AQP4 in hypoxia-ischemia-induced br...BACKGROUND:Previous studies have demonstrated that aquaporin-4 (AQP4) plays a key role in the formation and resolution of brain edema.However,the molecular mechanisms and role of AQP4 in hypoxia-ischemia-induced brain edema remain poorly understood.OBJECTIVE:To establish a newborn animal model of astrocytic oxygen-glucose deprivation and reintroduction,to observe the correlation between AQP4 and cellular volume,and to investigate the role of AQP4 in the development of brain edema following oxygen deprivation and reintroduction.DESIGN,TIME AND SETTING:A comparative experiment was performed at the Experimental Center of West China Second University Hospital between October 2007 and April 2009.MATERIALS:Astrocytes were derived from the neocortex of Sprague Dawley rats aged 3 days.METHODS:Astrocytes were incubated in glucose/serum-free Dulbecco's modified Eagle's medium,followed by 1% oxygen for 6 hours.Finally,oxygen-glucose deprivation and reintroduction models were successfully established.MAIN OUTCOME MEASURES:Real-time polymerase chain reaction and Western blot analysis were used to measure expression of AQP4 mRNA and protein in cultured rat astrocytes following oxygen-glucose deprivation and reintroduction.Astrocytic cellular volume,as determined by [3H]-3-O-methyl-D-glucose,was used to represent the extent of astrocytic swelling.RESULTS:During oxygen-glucose deprivation,AQP4 mRNA and protein expression gradually decreased in astrocytes,whereas cellular volume increased in a time-dependent manner (P〈 0.01).Following oxygen-glucose reintroduction,AQP4 mRNAand protein expression was upregulated,peaked at day 7,and then gradually decreased,but still higher than normal levels (P 〈 0.05).However,cellular volume gradually decreased (P 〈 0.01),and then reached normal levels at day 7.CONCLUSION:AQP4 expression highly correlated with cellular volume changes,suggesting that AQP4 played an important role in modulating brain water transport in an astrocytic oxygen-glucose deprivation and reintroduction model.展开更多
Intracranial hypertension is a serious threat to the health of neurosurgical patients.At present,there is a lack of a safe and e®ective technology to monitor intracranial pressure(ICP)accurately and nondestructiv...Intracranial hypertension is a serious threat to the health of neurosurgical patients.At present,there is a lack of a safe and e®ective technology to monitor intracranial pressure(ICP)accurately and nondestructively.In this paper,based on near infrared technology,the continuous nonde-structive monitoring of ICP change caused by brain edema was studied.The rat brain edema models were constructed by lipopolysaccharide.The ICP monitor and the self-made near infrared tissue parameter measuring instrument were used to monitor the invasive intracranial pressure and the reduced scattering coe±cient of brain tissue during the brain edema development.The results showed that there was a negative correlation between the reduced scattering coe±cient(690nm and 834nm)and ICP,and then the mathematical model was established.The experimental results promoted the development of nondestructive ICP monitoring based on near infrared technology.展开更多
BACKGROUND: Stereo-tactic radiation therapy (SRT) is widely used to treat intracranial diseases, but some patients suffered from radiation induced brain edema after SRT. Once radiation induced brain edema occurs, t...BACKGROUND: Stereo-tactic radiation therapy (SRT) is widely used to treat intracranial diseases, but some patients suffered from radiation induced brain edema after SRT. Once radiation induced brain edema occurs, the treatment is quite difficult, and it always leads to a poor outcome. Dexamethasone has certain therapeutic effect on traumatic brain edema, but the biological mechanism is still unclear. OBJECTIVE : To observe the effect of dexamethasone on the neutrophil expression of CD18.DESIGN : A randomized control observation.SETTING: Changhai Hospital of the Second Military Medical University of Chinese PLA. MATERIALS : The experiment was carried out in Changhai Hospital of the Second Military Medical University of Chinese PLA from January 1999 to December 1999. Twenty SD rats (male and female each in half) weighing (250±50) g were used. METHODS: Twenty SD rats were divided into four groups at random. ① Blank control group (n=5): The rats were not treated without dexamethasone or irradiation;② Irradiation group (n=5): The rats were given irradiation but no dexamethasone treatment; ③ Irradiation+1 mg/kg dexamethasone group (n=5); The rats were treated with irradiation and dexamethasone of 1 mg/kg; ④Irradiation+5 mg/kg dexamethasone group (n=5): The rats were treated with irradiation and dexamethasone of 5 mg/kg. The heads of the rats were irradiated with 10 MeV X-ray (30 Gy), and brain tissue was removed after 2 weeks to observe the pathological changes. Blood samples were taken from the carotid artery, gradient centrifugation was used, and neutrophile layer was obtained, the level of neutrophile expression of CD18 mRNA and quantity of membrane proteins in blood were detected with Northern blot and flow cytometry respectively. MAIN OUTCOME MEASURES: ① Blood cell count; ② Pathological results; ③ level of neutrophile expression of CD18 mRNA and quantity of membrane proteins. RESULTS : All the 20 SD rats were involved in the analysis of results without deletion. At 2 weeks after irradiation, obvious cell injury could be observed under light microscope. The level of neutrophile expression of CD18 mRNA and quantity of membrane proteins in blood were obviously increased, but the severity of cell injury was relieved in the irradiation+1 and 5 mg/kg dexamethasone groups, and the CD18 expression was markedly suppressed (P 〈 0.05), and the suppression was more obvious in the irradiation+5 mg/kg dexamethasone group than in the irradiation+1 mg/kg dexamethasone group (P 〈 0.01 ). CONCLUSION: Dexamethasone can reduce the radiation induced brain edema by inhibiting the expression of CD18.展开更多
Objective: To determine whether VEGF plays a role in the development of peritumoral brain edema. Methods 50 meningioma patients and their VEGF expression were studied. We took a monoclonal antibody from mouse to VEGF ...Objective: To determine whether VEGF plays a role in the development of peritumoral brain edema. Methods 50 meningioma patients and their VEGF expression were studied. We took a monoclonal antibody from mouse to VEGF to stain the tumor cells, the vascular endothelial cells and the interstitial cells. The severity of brain edema was evaluated according to CT or MR scans by the following equation: edema index= V tumor +edema /Vtumor. The relationship between VEGF expression and edema index was analyzed statistically. Results VEGF was expressed in meningioma tumor cells, which is usually concentrated at the peripheral sites of the tumor. There was a positive linear correlation between the expression and the brain edema index. Conclusion VEGF may play a role in the development of peritumoral brain edema in meningioma patient.展开更多
Traumatic brain injury induces potent inflammatory responses that can exacerbate secondary blood-brain barrier(BBB) disruption, neuronal injury, and neurological dysfunction. Dexmedetomidine is a novel α2-adrenergi...Traumatic brain injury induces potent inflammatory responses that can exacerbate secondary blood-brain barrier(BBB) disruption, neuronal injury, and neurological dysfunction. Dexmedetomidine is a novel α2-adrenergic receptor agonist that exert protective effects in various central nervous system diseases. The present study was designed to investigate the neuroprotective action of dexmedetomidine in a mouse traumatic brain injury model, and to explore the possible mechanisms. Adult male C57 BL/6 J mice were subjected to controlled cortical impact. After injury, animals received 3 days of consecutive dexmedetomidine therapy(25 μg/kg per day). The modified neurological severity score was used to assess neurological deficits. The rotarod test was used to evaluate accurate motor coordination and balance. Immunofluorescence was used to determine expression of ionized calcium binding adapter molecule-1, myeloperoxidase, and zonula occluden-1 at the injury site. An enzyme linked immunosorbent assay was used to measure the concentration of interleukin-1β(IL-1β), tumor necrosis factor α, and IL-6. The dry-wet weight method was used to measure brain water content. The Evans blue dye extravasation assay was used to measure BBB disruption. Western blot assay was used to measure protein expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3), caspase-1 p20, IL-1β, nuclear factor kappa B(NF-κB) p65, occluding, and zonula occluden-1. Flow cytometry was used to measure cellular apoptosis. Results showed that dexmedetomidine treatment attenuated early neurological dysfunction and brain edema. Further, dexmedetomidine attenuated post-traumatic inflammation, up-regulated tight junction protein expression, and reduced secondary BBB damage and apoptosis. These protective effects were accompanied by down-regulation of the NF-κB and NLRP3 inflammasome pathways. These findings suggest that dexmedetomidine exhibits neuroprotective effects against acute(3 days) post-traumatic inflammatory responses, potentially via suppression of NF-κB and NLRP3 inflammasome activation.展开更多
OBJECTIVE: To investigate the relationship of aquaporin 4 (AQP4) and brain edema. DATA SOURCES: Using the terms of "aquaporin-4, brain edema", we searched PubMed database to identify studies published from Janua...OBJECTIVE: To investigate the relationship of aquaporin 4 (AQP4) and brain edema. DATA SOURCES: Using the terms of "aquaporin-4, brain edema", we searched PubMed database to identify studies published from January 1997 to April 2006 in the English languages. Meanwhile, we also searched China National Knowledge Infrastructure (CNKI) for related studies. STUDY SELECTION: The collected data were selected firstly. Studies on AQP4 and brain edema were chosen and their full-texts were searched for, and those with repetitive or review studies were excluded. DATA EXTRACTION: Totally 146 related studies were collected, 42 of them were involved and the other 104 studies were used for reading reference data. DATA SYNTHESIS: AQP4 is a selective water permeable integral membrane protein. It is mainly expressed in astrocytes and ependymocyte, and is the important structural basis for water regulation and transportation between glial cells and cerebrospinal fluid or vessels. Phosphorylation is involved in the regulation of AQP4. AQP4 participates in the formation of brain edema caused by various factors. Studies on the structure and pathological changes of AQP4 are still in the initial stage, and the role and mechanism of AQP4 in the formation of brain edema is very unclear. CONCLUSION: AQP4 plays a critical regulating role in the formation of ischemic brain edema, but whether it is regulated by drugs lacks reliable evidence.展开更多
The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury(TBI) and the potential mechanisms related to the nucleotide-binding oligomerization...The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury(TBI) and the potential mechanisms related to the nucleotide-binding oligomerization domain(NOD)-like receptor(NLR) pyrin domain-containing 3(NLRP3) inflammasome activation. TBI model was established by cold-induced brain injury. Male C57BL/6 mice were randomly assigned into 3, 6, 12, 24, 48 and 72 h survival groups to investigate cerebral edema development with time and received 0, 5, 10, 20 and 40 mg/kg telmisartan by oral gavage, 1 h prior to TBI to determine the efficient anti-edemic dose. The therapeutic window was identified by post-treating 30 min, 1 h, 2 h and 4 h after TBI. Blood-brain barrier(BBB) integrity, the neurological function and histological injury were assessed, at the same time, the m RNA and protein expression levels of NLRP3 inflammasome, IL-1β and IL-18 concentrations in peri-contused brain tissue were measured 24 h post TBI. The results showed that the traumatic cerebral edema occurred from 6 h, reached the peak at 24 h and recovered to the baseline 72 h after TBI. A single oral dose of 5, 10 and 20 mg/kg telmisartan could reduce cerebral edema. Post-treatment up to 2 h effectively limited the edema development. Furthermore, prophylactic administration of telmisartan markedly inhibited BBB impairment, NLRP3, apoptotic speck-containing protein(ASC) and Caspase-1 activation, as well as IL-1β and IL-18 maturation, subsequently improved the neurological outcomes. In conclusion, telmisartan can reduce traumatic cerebral edema by inhibiting the NLRP3 inflammasome-regulated IL-1β and IL-18 accumulation.展开更多
Intracranial hypertension is a major cause of morbidity and mortality of patients suffering from fulminant hepatic failure. The etiology of this intracranial hypertension is not fully determined, and is probably multi...Intracranial hypertension is a major cause of morbidity and mortality of patients suffering from fulminant hepatic failure. The etiology of this intracranial hypertension is not fully determined, and is probably multifactorial, combining a cytotoxic brain edema due to the astrocytic accumulation of glutamine, and an increase in cerebral blood volume and cerebral blood flow, in part due to inflammation, to glutamine and to toxic products of the diseased liver. Validated methods to control intracranial hypertension in fulminant hepatic failure patients mainly include mannitol, hypertonic saline, indomethacin, thiopental, and hyperventilation. However all these measures are often not sufficient in absence of liver transplantation, the only curative treatment of intracranial hypertension in fulminant hepatic failure to date. Induced moderate hypothermia seems very promising in this setting, but has to be validated by a controlled, randomized study. Artificial liver support systems have been under investigation for many decades. The bioartiflcial liver, based on both detoxification and swine liver cells, has shown some efficacy on reduction of intracranial pressure but did not show survival benefit in a controlled, randomized study. The Molecular Adsorbents Recirculating System has shown some efficacy in decreasing intracranial pressure in an animal model of liver failure, but has still to be evaluated in a phase Ⅲ trial.展开更多
To investigate the role of AQP9 in brain edema, the expression of AQP9 in an infectious rat brain edema model induced by the injection of lipopolysaccharide (LPS) was examined. Immuno- histochemistry and reverse tra...To investigate the role of AQP9 in brain edema, the expression of AQP9 in an infectious rat brain edema model induced by the injection of lipopolysaccharide (LPS) was examined. Immuno- histochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that the expressions of AQP9 mRNA and protein at all observed intervals were significantly increased in LPS-treated animals in comparison with the control animals. Time-course analysis showed that the first signs of blood-brain barrier disruption and the increase of brain water content in LPS-treated animals were evident 6 h after LPS injection, with maximum value appearing at 12 h, which coincided with the expression profiles of AQP9 mRNA and protein in LPS-treated animals. The further correlation analysis revealed strong positive correlations among the brain water content, the disruption of the blood-brain barrier and the enhanced expressions of AQP9 mRNA and protein in LPS-treated animals. These results suggested that the regulation of AQP9 expression may play im- portant roles in water movement and in brain metabolic homeostasis associated with the pathophysi- ology of brain edema induced by LPS injection.展开更多
After traumatic brain injury, vasogenic and cytotoxic edema appear sequentially on the involved side. Neuroimaging investigations of edema on the injured side have employed apparent diffusion coefficient measurements ...After traumatic brain injury, vasogenic and cytotoxic edema appear sequentially on the involved side. Neuroimaging investigations of edema on the injured side have employed apparent diffusion coefficient measurements in diffusion tensor imaging. We investigated the changes occurring on the injured and uninjured sides using diffusion tensor imaging/apparent diffusion coefficient and histological samples in rats. We found that, on the injured side, that vasogenic edema appeared at 1 hour and intracellular edema appeared at 3 hours. Mixed edema was observed at 6 hours, worsening until 12–24 hours post-injury. Simultaneously, microglial cells proliferated at the trauma site. Apparent diffusion coefficient values increased at 1 hour, decreased at 6 hours, and increased at 12 hours. The uninjured side showed no significant pathological change at 1 hour after injury. Cytotoxic edema appeared at 3 hours, and vasogenic edema was visible at 6 hours. Cytotoxic edema persisted, but vasogenic edema tended to decrease after 12–24 hours. Despite this complex edema pattern on the uninjured side with associated pathologic changes, no significant change in apparent diffusion coefficient values was detected over the first 24 hours. Apparent diffusion coefficient values accurately detected the changes on the injured side, but did not detect the changes on the uninjured side, giving a false-negative result.展开更多
The experimental model of traumatic brain injury was established in Sprague-Dawley rats according to Feeney's free falling method. The brains were harvested at 2, 6 and 24 hours, and at 3 and 5 days after injury. Cha...The experimental model of traumatic brain injury was established in Sprague-Dawley rats according to Feeney's free falling method. The brains were harvested at 2, 6 and 24 hours, and at 3 and 5 days after injury. Changes in brain water content were determined using the wet and dry weights. Our results showed that water content of tissue significantly increased after traumatic brain injury, and reached minimum at 24 hours. Hematoxylin-eosin staining revealed pathological impairment of brain tissue at each time point after injury, particularly at 3 days, with nerve cell edema, degenera- tion, and necrosis observed, and the apoptotic rate significantly increased. Immunohistochemistry and western blot analysis revealed that the expression of occludin at the injured site gradually de- creased as injury time advanced and reached a minimum at 3 days after injury; the expression of connexin 43 gradually increased as injury time advanced and reached a peak at 24 hours after in-jury. The experimental findings indicate that changes in occludin and connexin 43 expression were consistent with the development of brain edema, and may reflect the pathogenesis of brain injury.展开更多
OBJECTIVE: To evaluate the efficacy and safety of MK-801 and its effect on lesion volume in rat models of acute brain injury.DATA SOURCES: Key terms were "stroke","brain diseases","brain injur...OBJECTIVE: To evaluate the efficacy and safety of MK-801 and its effect on lesion volume in rat models of acute brain injury.DATA SOURCES: Key terms were "stroke","brain diseases","brain injuries","brain hemorrhage, traumatic","acute brain injury","dizocilpine maleate","dizocilpine","MK-801","MK801","rat","rats","rattus" and "murine". PubMed, Cochrane library, EMBASE, the China National Knowledge Infrastructure, WanFang database, the VIP Journal Integration Platform(VJIP) and SinoMed databases were searched from their inception dates to March 2018.DATA SELECTION: Studies were selected if they reported the effects of MK-801 in experimental acute brain injury. Two investigators independently conducted literature screening, data extraction, and methodological quality assessments.OUTCOME MEASURES: The primary outcomes included lesion volume and brain edema. The secondary outcomes included behavioral assessments with the Bederson neurological grading system and the water maze test 24 hours after brain injury.RESULTS: A total of 52 studies with 2530 samples were included in the systematic review. Seventeen of these studies had a high methodological quality. Overall, the lesion volume(34 studies, n = 966, MD =-58.31, 95% CI:-66.55 to-50.07;P < 0.00001) and degree of cerebral edema(5 studies, n = 75, MD =-1.21, 95% CI:-1.50 to-0.91;P < 0.00001) were significantly decreased in the MK-801 group compared with the control group. MK-801 improved spatial cognition assessed with the water maze test(2 studies, n = 60, MD =-10.88, 95% CI:-20.75 to-1.00;P = 0.03) and neurological function 24 hours after brain injury(11 studies, n = 335, MD =-1.04, 95% CI:-1.47 to-0.60;P < 0.00001). Subgroup analysis suggested an association of reduction in lesion volume with various injury models(34 studies, n = 966, MD =-58.31, 95% CI:-66.55 to-50.07;P = 0.004). Further network analysis showed that 0–1 mg/kg MK-801 may be the optimal dose for treatment in the middle cerebral artery occlusion animal model.CONCLUSION: MK-801 effectively reduces brain lesion volume and the degree of cerebral edema in rat models of experimental acute brain injury, providing a good neuroprotective effect. Additionally, MK-801 has a good safety profile, and its mechanism of action is well known. Thus, MK-801 may be suitable for future clinical trials and applications.展开更多
Studies have shown that hyperglycemia aggravates brain damage by affecting vascular endothelial function. However, the precise mechanism remains unclear. Male Sprague-Dawley rat models of diabetes were established by ...Studies have shown that hyperglycemia aggravates brain damage by affecting vascular endothelial function. However, the precise mechanism remains unclear. Male Sprague-Dawley rat models of diabetes were established by a high-fat diet combined with an intraperitoneal injection of streptozotocin. Rat models of traumatic brain injury were established using the fluid percussion method. Compared with traumatic brain injury rats without diabetic, diabetic rats with traumatic brain injury exhibited more severe brain injury, manifested as increased brain water content and blood-brain barrier permeability, the upregulation of heme oxygenase-1, myeloperoxidase, and Bax, the downregulation of occludin, zona-occludens 1, and Bcl-2 in the penumbra, and reduced modified neurological severity scores. The intraperitoneal injection of a nitric oxide synthase inhibitor N(5)-(1-iminoethyl)-L-ornithine(10 mg/kg) 15 minutes before brain injury aggravated the injury. These findings suggested that nitric oxide synthase plays an important role in the maintenance of cerebral microcirculation, including anti-inflammatory, anti-oxidative stress, and anti-apoptotic activities in diabetic rats with traumatic brain injury. The experimental protocols were approved by the Institutional Animal Care Committee of Harbin Medical University, China(approval No. ky2017-126) on March 6, 2017.展开更多
Objective To explore the effect of locally using dexamethasone on the blood flow velocity in the middle cerebral artery(FVmca) and cerebral edema after brain injury. Methods 20 rabbits were classified to 2 groups, gro...Objective To explore the effect of locally using dexamethasone on the blood flow velocity in the middle cerebral artery(FVmca) and cerebral edema after brain injury. Methods 20 rabbits were classified to 2 groups, group A( the control group) and B (the treated group). An experimental rabbit model was conducted to contusion by bone window plasty with extradural hitting. Group B was treated by locally infiltrating of dexamethasone at equidistance to lesions. Group A was given normal saline the same way as Group B. The changes of FVmca using trans-cranial Doppler and moisture in brain tissues were observed. Results The normal value of FVmca was (31.8± 4.5)cm/s, while the value of FVmca in group A and B were (15.4± 3.9)cm/s and (22.1± 3.5)cm/s separately.Water content in damaged hemisphere in Group A and B were (81.54± 0.55)% and (79.35± 0.50)% respectively. There was a significant difference between the 2 groups (P<0.05). The levels of FVmca in group A and B were lower than that of control and there was also a significant difference between group A and B (P<0.05).Conclusions FVmca decreased and the brain moisture increased after brain injury while FVmca increased and the brain moisture reduced after treatment with dexamethasone. It demonstreated that local treatment of dexamethasone had an obvious therapeutical effect on brain injury.展开更多
BACKGROUND:To assess the association between relevant brain computed tomography(CT)parameters at different time and neurological prognosis in adult comatose survivors after cardiac arrest(CA).METHODS:A total of 94 CA ...BACKGROUND:To assess the association between relevant brain computed tomography(CT)parameters at different time and neurological prognosis in adult comatose survivors after cardiac arrest(CA).METHODS:A total of 94 CA patients who underwent early and late CT scans(within 24 h and 24 h to 7 d respectively after CA)between January 2018 and April 2020 were enrolled in this retrospective study.According to the Cerebral Performance Category(CPC)score at hospital discharge,the patients were divided into either a good outcome(CPC 1-2)group or a poor-outcome group(CPC 3-5).The grey-to-white matter ratio(GWR)and the proportion of cerebrospinal fluid volume(pCSFV)were measured.In predicting poor outcomes,the prognostic performance of relevant CT parameters was evaluated,and the comparison analysis(expressed as the ratio of parameters in late CT to those in the early CT)of diff erent CT time was conducted.RESULTS:Totally 26 patients were in the good-outcome group,while 68 patients were in the poor-outcome group.The putamen density,GWR,and pCSFV in late CT were significantly lower in the poor-outcome group(P<0.05).The ratios of GWR and pCSFV in the poor-outcome group were signifi cantly decreased according to comparison analysis of diff erent CT time(P<0.05),while there was no signifi cant diff erence in the ratio of putamen density.GWR-basal ganglia<1.18 in late CT showed the best predictive value.The ratio of pCSFV<0.98 predicted unfavorable neurological outcomes with a sensitivity of 65.9%and a specifi city of 93.8%(P=0.001).CONCLUSIONS:Brain CT performed>24 h after CA may be a good choice as a neuroimaging approach to evaluating prognosis.To predict neurological prognosis,comparison analysis of diff erent CT time can be used as another promising tool in comatose CA survivors.展开更多
AIM:To compare rifaximin and insulin-like growth factor(IGF)-1 treatment of hyperammonemia and brain edema in cirrhotic rats with portal occlusion.METHODS:Rats with CCl4-induced cirrhosis with ascites plus portal vein...AIM:To compare rifaximin and insulin-like growth factor(IGF)-1 treatment of hyperammonemia and brain edema in cirrhotic rats with portal occlusion.METHODS:Rats with CCl4-induced cirrhosis with ascites plus portal vein occlusion and controls were randomized into six groups:Cirrhosis;Cirrhosis + IGF-1;Cirrhosis + rifaximin;Controls;Controls + IGF-1;and Controls + rifaximin.An oral glutamine-challenge test was performed,and plasma and cerebral ammonia,glucose,bilirubin,transaminases,endotoxemia,brain water content and ileocecal cultures were measured and liver histology was assessed.RESULTS:Rifaximin treatment significantly reduced bacterial overgrowth and endotoxemia compared with cirrhosis groups,and improved some liver function parameters(bilirubin,alanine aminotransferase and aspartate aminotransferase).These effects were associated with a significant reduction in cerebral water content.Blood and cerebral ammonia levels,and area-underthe-curve values for oral glutamine-challenge tests were similar in rifaximin-treated cirrhotic rats and control group animals.By contrast,IGF-1 administration failed to improve most alterations observed in cirrhosis.CONCLUSION:By reducing gut bacterial overgrowth,only rifaximin was capable of normalizing plasma and brain ammonia and thereby abolishing low-grade brain edema,alterations associated with hepatic encephalopathy.展开更多
Sirtuin 2(SIRT2)inhibition or Sirt2 knocko ut in animal models protects against the development of neurodegenerative diseases and cerebral ischemia.However,the role of SIRT2 in traumatic brain injury(TBI)remains uncle...Sirtuin 2(SIRT2)inhibition or Sirt2 knocko ut in animal models protects against the development of neurodegenerative diseases and cerebral ischemia.However,the role of SIRT2 in traumatic brain injury(TBI)remains unclear.In this study,we found that knockout of Sirt2 in a mouse model of TBI reduced brain edema,attenuated dis ruption of the blood-brain barrie r,decreased expression of the nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3)inflammasome,reduced the activity of the effector caspase-1,reduced neuroinflammation and neuronal pyroptosis,and improved neurological function.Knoc kout of Sirt2 in a mechanical stretch injury cell model in vitro also decreased expression of the NLRP3 inflammasome and pyroptosis.Our findings suggest that knockout of Sirt2 is neuro protective against TBI;therefore.Sirt2 could be a novel to rget for TBI treatment.展开更多
基金supported by the National Natural Science Foundation of China,No.82002400(to GJZ)Scientific Research Project of Hu nan Health Committee,No.20201911and No.20200469(both to ZJX)+2 种基金Scientific Research Project of Hunan Health Committee,No.20211411761(to HMW)the Natural Science Foundation of Hunan Province,No.2020JJ5512(to GJZ)a grant from Clinical Medical Technology Innovation Guidance Project in Hunan Province,No.2020SK51822(to ZJX)。
文摘Radiation therapy is considered the most effective non-surgical treatment for brain tumors.However,there are no available treatments for radiation-induced brain injury.Bisdemethoxycurcumin(BDMC)is a demethoxy derivative of curcumin that has anti-proliferative,anti-inflammatory,and anti-oxidant properties.To determine whether BDMC has the potential to treat radiation-induced brain injury,in this study,we established a rat model of radiation-induced brain injury by administe ring a single 30-Gy vertical dose of irradiation to the whole brain,followed by intraperitoneal injection of 500μL of a 100 mg/kg BDMC solution every day for 5 successive weeks.Our res ults showed that BDMC increased the body weight of rats with radiation-induced brain injury,improved lea rning and memory,attenuated brain edema,inhibited astrocyte activation,and reduced oxidative stress.These findings suggest that BDMC protects against radiationinduced brain injury.
基金supported by the Natural Science Foundation of Beijing(Key Program)No.Z200025(to JHY)+1 种基金the National Natural Science Foundation of China,No.81873818(to LHQ)Supporting Platform Construction Project of Peking University Health Science Center,No.BMU2021ZC011(to JHY).
文摘Recent studies have proposed three lymphatic drainage systems in the brain,that is,the glymphatic system,the intramural periarterial drainage pathway,and meningeal lymphatic vessels,whose roles in various neurological diseases have been widely explored.The glymphatic system is a fluid drainage and waste clearance pathway that utilizes perivascular space and aquaporin-4 protein located in the astrocyte endfeet to provide a space for exchange of cerebrospinal fluid and interstitial fluid.The intramural periarterial drainage pathway drives the flow of interstitial fluid through the capillary basement membrane and the arterial tunica media.Meningeal lymphatic vessels within the dura mater are involved in the removal of cerebral macromolecules and immune responses.After ischemic stroke,impairment of these systems could lead to cerebral edema,accumulation of toxic factors,and activation of neuroinflammation,while restoration of their normal functions can improve neurological outcomes.In this review,we summarize the basic concepts of these drainage systems,including drainage routes,physiological functions,regulatory mechanisms,and detection technologies.We also focus on the roles of lymphatic drainage systems in brain injury after ischemic stroke,as well as recent advances in therapeutic strategies targeting these drainage systems.These findings provide information for potential novel strategies for treatment of stroke.
基金Supported by Grant #TB 56 from the University of Buenos Aires,Argentina
文摘AIM:To study the blood-brain barrier integrity,brain edema, animal behavior and ammonia plasma levels in prehepatic portal hypertensive rats with and without acute liver intoxication. METHODS:Adults male Wistar rats were divided into four groups.Group Ⅰ:sham operation;Ⅱ:Prehepatic portal hypertension,produced by partial portal vein ligation;Ⅲ: Acetaminophen intoxication and Ⅳ:Prehepatic portal hypertension plus acetaminophen.Acetaminophen was administered to produce acute hepatic injury.Portal pressure,liver serum enzymes and ammonia plasma levels were determined.Brain cortex water content was registered and trypan blue was utilized to study blood brain barrier integrity.Reflexes and behavioral tests were recorded. RESULTS:Portal hypertension was significantly elevated in groups Ⅱ and Ⅳ.Uver enzymes and ammonia plasma levels were increased in groups Ⅱ,Ⅲ and Ⅳ.Prehepatic portal hypertension (group Ⅱ),acetaminophen intoxication (group Ⅲ) and both (group Ⅳ) had changes in the blood brain-barrier integrity (trypan blue) and hyperammonemia.Cortical edema was present in rats with acute hepatic injury in groups Ⅲ and Ⅳ.Behavioral test (rota rod) was altered in group Ⅳ. CONCLUSION:These results suggest the possibility of another pathway for cortical edema production because blood brain barrier was altered (vasogenic) and hyperammonemia was registered (oltotoxic).Group Ⅳ,with behavioral altered test,can be considered as a model for study at an early stage of portal-systemic encephalopathy.
基金the National Natural Science Foundation of China,No.30825039,30973236,30872346,30770748Chinese Postdoctoral Training Grant,No. 20070420575+1 种基金Application Basic Research Foundation of Sichuan Province,No. 2008JY0131Youth Science and Technology Foundation of Sichuan Province,No. 07zq026-135
文摘BACKGROUND:Previous studies have demonstrated that aquaporin-4 (AQP4) plays a key role in the formation and resolution of brain edema.However,the molecular mechanisms and role of AQP4 in hypoxia-ischemia-induced brain edema remain poorly understood.OBJECTIVE:To establish a newborn animal model of astrocytic oxygen-glucose deprivation and reintroduction,to observe the correlation between AQP4 and cellular volume,and to investigate the role of AQP4 in the development of brain edema following oxygen deprivation and reintroduction.DESIGN,TIME AND SETTING:A comparative experiment was performed at the Experimental Center of West China Second University Hospital between October 2007 and April 2009.MATERIALS:Astrocytes were derived from the neocortex of Sprague Dawley rats aged 3 days.METHODS:Astrocytes were incubated in glucose/serum-free Dulbecco's modified Eagle's medium,followed by 1% oxygen for 6 hours.Finally,oxygen-glucose deprivation and reintroduction models were successfully established.MAIN OUTCOME MEASURES:Real-time polymerase chain reaction and Western blot analysis were used to measure expression of AQP4 mRNA and protein in cultured rat astrocytes following oxygen-glucose deprivation and reintroduction.Astrocytic cellular volume,as determined by [3H]-3-O-methyl-D-glucose,was used to represent the extent of astrocytic swelling.RESULTS:During oxygen-glucose deprivation,AQP4 mRNA and protein expression gradually decreased in astrocytes,whereas cellular volume increased in a time-dependent manner (P〈 0.01).Following oxygen-glucose reintroduction,AQP4 mRNAand protein expression was upregulated,peaked at day 7,and then gradually decreased,but still higher than normal levels (P 〈 0.05).However,cellular volume gradually decreased (P 〈 0.01),and then reached normal levels at day 7.CONCLUSION:AQP4 expression highly correlated with cellular volume changes,suggesting that AQP4 played an important role in modulating brain water transport in an astrocytic oxygen-glucose deprivation and reintroduction model.
基金National Major Scientific Instruments and Equipment Development Project Funded by National Natural Science Foundation of China(81827803 and 81727804)the National Natural Science Foundation of China(61875085).
文摘Intracranial hypertension is a serious threat to the health of neurosurgical patients.At present,there is a lack of a safe and e®ective technology to monitor intracranial pressure(ICP)accurately and nondestructively.In this paper,based on near infrared technology,the continuous nonde-structive monitoring of ICP change caused by brain edema was studied.The rat brain edema models were constructed by lipopolysaccharide.The ICP monitor and the self-made near infrared tissue parameter measuring instrument were used to monitor the invasive intracranial pressure and the reduced scattering coe±cient of brain tissue during the brain edema development.The results showed that there was a negative correlation between the reduced scattering coe±cient(690nm and 834nm)and ICP,and then the mathematical model was established.The experimental results promoted the development of nondestructive ICP monitoring based on near infrared technology.
文摘BACKGROUND: Stereo-tactic radiation therapy (SRT) is widely used to treat intracranial diseases, but some patients suffered from radiation induced brain edema after SRT. Once radiation induced brain edema occurs, the treatment is quite difficult, and it always leads to a poor outcome. Dexamethasone has certain therapeutic effect on traumatic brain edema, but the biological mechanism is still unclear. OBJECTIVE : To observe the effect of dexamethasone on the neutrophil expression of CD18.DESIGN : A randomized control observation.SETTING: Changhai Hospital of the Second Military Medical University of Chinese PLA. MATERIALS : The experiment was carried out in Changhai Hospital of the Second Military Medical University of Chinese PLA from January 1999 to December 1999. Twenty SD rats (male and female each in half) weighing (250±50) g were used. METHODS: Twenty SD rats were divided into four groups at random. ① Blank control group (n=5): The rats were not treated without dexamethasone or irradiation;② Irradiation group (n=5): The rats were given irradiation but no dexamethasone treatment; ③ Irradiation+1 mg/kg dexamethasone group (n=5); The rats were treated with irradiation and dexamethasone of 1 mg/kg; ④Irradiation+5 mg/kg dexamethasone group (n=5): The rats were treated with irradiation and dexamethasone of 5 mg/kg. The heads of the rats were irradiated with 10 MeV X-ray (30 Gy), and brain tissue was removed after 2 weeks to observe the pathological changes. Blood samples were taken from the carotid artery, gradient centrifugation was used, and neutrophile layer was obtained, the level of neutrophile expression of CD18 mRNA and quantity of membrane proteins in blood were detected with Northern blot and flow cytometry respectively. MAIN OUTCOME MEASURES: ① Blood cell count; ② Pathological results; ③ level of neutrophile expression of CD18 mRNA and quantity of membrane proteins. RESULTS : All the 20 SD rats were involved in the analysis of results without deletion. At 2 weeks after irradiation, obvious cell injury could be observed under light microscope. The level of neutrophile expression of CD18 mRNA and quantity of membrane proteins in blood were obviously increased, but the severity of cell injury was relieved in the irradiation+1 and 5 mg/kg dexamethasone groups, and the CD18 expression was markedly suppressed (P 〈 0.05), and the suppression was more obvious in the irradiation+5 mg/kg dexamethasone group than in the irradiation+1 mg/kg dexamethasone group (P 〈 0.01 ). CONCLUSION: Dexamethasone can reduce the radiation induced brain edema by inhibiting the expression of CD18.
文摘Objective: To determine whether VEGF plays a role in the development of peritumoral brain edema. Methods 50 meningioma patients and their VEGF expression were studied. We took a monoclonal antibody from mouse to VEGF to stain the tumor cells, the vascular endothelial cells and the interstitial cells. The severity of brain edema was evaluated according to CT or MR scans by the following equation: edema index= V tumor +edema /Vtumor. The relationship between VEGF expression and edema index was analyzed statistically. Results VEGF was expressed in meningioma tumor cells, which is usually concentrated at the peripheral sites of the tumor. There was a positive linear correlation between the expression and the brain edema index. Conclusion VEGF may play a role in the development of peritumoral brain edema in meningioma patient.
基金supported by the National Natural Science Foundation of China,No.81330029,81671380the Natural Science Foundation of Tianjin City of China,No.17JCZDJC35900
文摘Traumatic brain injury induces potent inflammatory responses that can exacerbate secondary blood-brain barrier(BBB) disruption, neuronal injury, and neurological dysfunction. Dexmedetomidine is a novel α2-adrenergic receptor agonist that exert protective effects in various central nervous system diseases. The present study was designed to investigate the neuroprotective action of dexmedetomidine in a mouse traumatic brain injury model, and to explore the possible mechanisms. Adult male C57 BL/6 J mice were subjected to controlled cortical impact. After injury, animals received 3 days of consecutive dexmedetomidine therapy(25 μg/kg per day). The modified neurological severity score was used to assess neurological deficits. The rotarod test was used to evaluate accurate motor coordination and balance. Immunofluorescence was used to determine expression of ionized calcium binding adapter molecule-1, myeloperoxidase, and zonula occluden-1 at the injury site. An enzyme linked immunosorbent assay was used to measure the concentration of interleukin-1β(IL-1β), tumor necrosis factor α, and IL-6. The dry-wet weight method was used to measure brain water content. The Evans blue dye extravasation assay was used to measure BBB disruption. Western blot assay was used to measure protein expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3), caspase-1 p20, IL-1β, nuclear factor kappa B(NF-κB) p65, occluding, and zonula occluden-1. Flow cytometry was used to measure cellular apoptosis. Results showed that dexmedetomidine treatment attenuated early neurological dysfunction and brain edema. Further, dexmedetomidine attenuated post-traumatic inflammation, up-regulated tight junction protein expression, and reduced secondary BBB damage and apoptosis. These protective effects were accompanied by down-regulation of the NF-κB and NLRP3 inflammasome pathways. These findings suggest that dexmedetomidine exhibits neuroprotective effects against acute(3 days) post-traumatic inflammatory responses, potentially via suppression of NF-κB and NLRP3 inflammasome activation.
文摘OBJECTIVE: To investigate the relationship of aquaporin 4 (AQP4) and brain edema. DATA SOURCES: Using the terms of "aquaporin-4, brain edema", we searched PubMed database to identify studies published from January 1997 to April 2006 in the English languages. Meanwhile, we also searched China National Knowledge Infrastructure (CNKI) for related studies. STUDY SELECTION: The collected data were selected firstly. Studies on AQP4 and brain edema were chosen and their full-texts were searched for, and those with repetitive or review studies were excluded. DATA EXTRACTION: Totally 146 related studies were collected, 42 of them were involved and the other 104 studies were used for reading reference data. DATA SYNTHESIS: AQP4 is a selective water permeable integral membrane protein. It is mainly expressed in astrocytes and ependymocyte, and is the important structural basis for water regulation and transportation between glial cells and cerebrospinal fluid or vessels. Phosphorylation is involved in the regulation of AQP4. AQP4 participates in the formation of brain edema caused by various factors. Studies on the structure and pathological changes of AQP4 are still in the initial stage, and the role and mechanism of AQP4 in the formation of brain edema is very unclear. CONCLUSION: AQP4 plays a critical regulating role in the formation of ischemic brain edema, but whether it is regulated by drugs lacks reliable evidence.
基金supported by grants from the National Natural Science Foundation of China(No.81270239)the Natural Science Foundation of Hubei Province of China(No.2014CFB200)
文摘The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury(TBI) and the potential mechanisms related to the nucleotide-binding oligomerization domain(NOD)-like receptor(NLR) pyrin domain-containing 3(NLRP3) inflammasome activation. TBI model was established by cold-induced brain injury. Male C57BL/6 mice were randomly assigned into 3, 6, 12, 24, 48 and 72 h survival groups to investigate cerebral edema development with time and received 0, 5, 10, 20 and 40 mg/kg telmisartan by oral gavage, 1 h prior to TBI to determine the efficient anti-edemic dose. The therapeutic window was identified by post-treating 30 min, 1 h, 2 h and 4 h after TBI. Blood-brain barrier(BBB) integrity, the neurological function and histological injury were assessed, at the same time, the m RNA and protein expression levels of NLRP3 inflammasome, IL-1β and IL-18 concentrations in peri-contused brain tissue were measured 24 h post TBI. The results showed that the traumatic cerebral edema occurred from 6 h, reached the peak at 24 h and recovered to the baseline 72 h after TBI. A single oral dose of 5, 10 and 20 mg/kg telmisartan could reduce cerebral edema. Post-treatment up to 2 h effectively limited the edema development. Furthermore, prophylactic administration of telmisartan markedly inhibited BBB impairment, NLRP3, apoptotic speck-containing protein(ASC) and Caspase-1 activation, as well as IL-1β and IL-18 maturation, subsequently improved the neurological outcomes. In conclusion, telmisartan can reduce traumatic cerebral edema by inhibiting the NLRP3 inflammasome-regulated IL-1β and IL-18 accumulation.
文摘Intracranial hypertension is a major cause of morbidity and mortality of patients suffering from fulminant hepatic failure. The etiology of this intracranial hypertension is not fully determined, and is probably multifactorial, combining a cytotoxic brain edema due to the astrocytic accumulation of glutamine, and an increase in cerebral blood volume and cerebral blood flow, in part due to inflammation, to glutamine and to toxic products of the diseased liver. Validated methods to control intracranial hypertension in fulminant hepatic failure patients mainly include mannitol, hypertonic saline, indomethacin, thiopental, and hyperventilation. However all these measures are often not sufficient in absence of liver transplantation, the only curative treatment of intracranial hypertension in fulminant hepatic failure to date. Induced moderate hypothermia seems very promising in this setting, but has to be validated by a controlled, randomized study. Artificial liver support systems have been under investigation for many decades. The bioartiflcial liver, based on both detoxification and swine liver cells, has shown some efficacy on reduction of intracranial pressure but did not show survival benefit in a controlled, randomized study. The Molecular Adsorbents Recirculating System has shown some efficacy in decreasing intracranial pressure in an animal model of liver failure, but has still to be evaluated in a phase Ⅲ trial.
基金supported by a grant for Scientific Research Program from the Health Bureau of Henan Province (No.200202)
文摘To investigate the role of AQP9 in brain edema, the expression of AQP9 in an infectious rat brain edema model induced by the injection of lipopolysaccharide (LPS) was examined. Immuno- histochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that the expressions of AQP9 mRNA and protein at all observed intervals were significantly increased in LPS-treated animals in comparison with the control animals. Time-course analysis showed that the first signs of blood-brain barrier disruption and the increase of brain water content in LPS-treated animals were evident 6 h after LPS injection, with maximum value appearing at 12 h, which coincided with the expression profiles of AQP9 mRNA and protein in LPS-treated animals. The further correlation analysis revealed strong positive correlations among the brain water content, the disruption of the blood-brain barrier and the enhanced expressions of AQP9 mRNA and protein in LPS-treated animals. These results suggested that the regulation of AQP9 expression may play im- portant roles in water movement and in brain metabolic homeostasis associated with the pathophysi- ology of brain edema induced by LPS injection.
基金supported by the National Natural Science Foundation of China,No.81160181the International Cooperation Project of Hainan Province,No.Qiongke(2012)65
文摘After traumatic brain injury, vasogenic and cytotoxic edema appear sequentially on the involved side. Neuroimaging investigations of edema on the injured side have employed apparent diffusion coefficient measurements in diffusion tensor imaging. We investigated the changes occurring on the injured and uninjured sides using diffusion tensor imaging/apparent diffusion coefficient and histological samples in rats. We found that, on the injured side, that vasogenic edema appeared at 1 hour and intracellular edema appeared at 3 hours. Mixed edema was observed at 6 hours, worsening until 12–24 hours post-injury. Simultaneously, microglial cells proliferated at the trauma site. Apparent diffusion coefficient values increased at 1 hour, decreased at 6 hours, and increased at 12 hours. The uninjured side showed no significant pathological change at 1 hour after injury. Cytotoxic edema appeared at 3 hours, and vasogenic edema was visible at 6 hours. Cytotoxic edema persisted, but vasogenic edema tended to decrease after 12–24 hours. Despite this complex edema pattern on the uninjured side with associated pathologic changes, no significant change in apparent diffusion coefficient values was detected over the first 24 hours. Apparent diffusion coefficient values accurately detected the changes on the injured side, but did not detect the changes on the uninjured side, giving a false-negative result.
基金supported by the Natural Science Foundation of Guangdong Province,No.10151600101000002
文摘The experimental model of traumatic brain injury was established in Sprague-Dawley rats according to Feeney's free falling method. The brains were harvested at 2, 6 and 24 hours, and at 3 and 5 days after injury. Changes in brain water content were determined using the wet and dry weights. Our results showed that water content of tissue significantly increased after traumatic brain injury, and reached minimum at 24 hours. Hematoxylin-eosin staining revealed pathological impairment of brain tissue at each time point after injury, particularly at 3 days, with nerve cell edema, degenera- tion, and necrosis observed, and the apoptotic rate significantly increased. Immunohistochemistry and western blot analysis revealed that the expression of occludin at the injured site gradually de- creased as injury time advanced and reached a minimum at 3 days after injury; the expression of connexin 43 gradually increased as injury time advanced and reached a peak at 24 hours after in-jury. The experimental findings indicate that changes in occludin and connexin 43 expression were consistent with the development of brain edema, and may reflect the pathogenesis of brain injury.
基金supported by the National Natural Science Foundation of China,No.81822050(to QQL),81873321(to HX),81673990(to QQL),81330085(to QS),81730107(to YJW)the Shanghai Municipal Health and Family Planning Commission TCM Research Project of China,No.2018JP014(to HX)+4 种基金the Three-Year Action Plan to Promote Clinical Skills and Clinical Innovation in Municipal Hospitals of China,No.16CR1017A(to YJW)the Shanghai Traditional Chinese Medicine Chronic Disease [Malignant Tumor,Bone Degenerative Disease] Clinical Medical Center of China,No.2017ZZ01010(to YJW)the National Ministry of Education Innovation Team of China,No.IRT1270(to YJW)the Innovation Team of Key Fields of the Ministry of Science and Technology of China,No.2015RA4002(to YJW)the Outstanding Principle Investigator Project of Guanghua Hospital,Changning District,Shanghai,China,No.2016-01(to QS),2016-06(to YJW)
文摘OBJECTIVE: To evaluate the efficacy and safety of MK-801 and its effect on lesion volume in rat models of acute brain injury.DATA SOURCES: Key terms were "stroke","brain diseases","brain injuries","brain hemorrhage, traumatic","acute brain injury","dizocilpine maleate","dizocilpine","MK-801","MK801","rat","rats","rattus" and "murine". PubMed, Cochrane library, EMBASE, the China National Knowledge Infrastructure, WanFang database, the VIP Journal Integration Platform(VJIP) and SinoMed databases were searched from their inception dates to March 2018.DATA SELECTION: Studies were selected if they reported the effects of MK-801 in experimental acute brain injury. Two investigators independently conducted literature screening, data extraction, and methodological quality assessments.OUTCOME MEASURES: The primary outcomes included lesion volume and brain edema. The secondary outcomes included behavioral assessments with the Bederson neurological grading system and the water maze test 24 hours after brain injury.RESULTS: A total of 52 studies with 2530 samples were included in the systematic review. Seventeen of these studies had a high methodological quality. Overall, the lesion volume(34 studies, n = 966, MD =-58.31, 95% CI:-66.55 to-50.07;P < 0.00001) and degree of cerebral edema(5 studies, n = 75, MD =-1.21, 95% CI:-1.50 to-0.91;P < 0.00001) were significantly decreased in the MK-801 group compared with the control group. MK-801 improved spatial cognition assessed with the water maze test(2 studies, n = 60, MD =-10.88, 95% CI:-20.75 to-1.00;P = 0.03) and neurological function 24 hours after brain injury(11 studies, n = 335, MD =-1.04, 95% CI:-1.47 to-0.60;P < 0.00001). Subgroup analysis suggested an association of reduction in lesion volume with various injury models(34 studies, n = 966, MD =-58.31, 95% CI:-66.55 to-50.07;P = 0.004). Further network analysis showed that 0–1 mg/kg MK-801 may be the optimal dose for treatment in the middle cerebral artery occlusion animal model.CONCLUSION: MK-801 effectively reduces brain lesion volume and the degree of cerebral edema in rat models of experimental acute brain injury, providing a good neuroprotective effect. Additionally, MK-801 has a good safety profile, and its mechanism of action is well known. Thus, MK-801 may be suitable for future clinical trials and applications.
基金supported by the National Natural Science Foundation of China,No. 81400989 (to WCY)。
文摘Studies have shown that hyperglycemia aggravates brain damage by affecting vascular endothelial function. However, the precise mechanism remains unclear. Male Sprague-Dawley rat models of diabetes were established by a high-fat diet combined with an intraperitoneal injection of streptozotocin. Rat models of traumatic brain injury were established using the fluid percussion method. Compared with traumatic brain injury rats without diabetic, diabetic rats with traumatic brain injury exhibited more severe brain injury, manifested as increased brain water content and blood-brain barrier permeability, the upregulation of heme oxygenase-1, myeloperoxidase, and Bax, the downregulation of occludin, zona-occludens 1, and Bcl-2 in the penumbra, and reduced modified neurological severity scores. The intraperitoneal injection of a nitric oxide synthase inhibitor N(5)-(1-iminoethyl)-L-ornithine(10 mg/kg) 15 minutes before brain injury aggravated the injury. These findings suggested that nitric oxide synthase plays an important role in the maintenance of cerebral microcirculation, including anti-inflammatory, anti-oxidative stress, and anti-apoptotic activities in diabetic rats with traumatic brain injury. The experimental protocols were approved by the Institutional Animal Care Committee of Harbin Medical University, China(approval No. ky2017-126) on March 6, 2017.
文摘Objective To explore the effect of locally using dexamethasone on the blood flow velocity in the middle cerebral artery(FVmca) and cerebral edema after brain injury. Methods 20 rabbits were classified to 2 groups, group A( the control group) and B (the treated group). An experimental rabbit model was conducted to contusion by bone window plasty with extradural hitting. Group B was treated by locally infiltrating of dexamethasone at equidistance to lesions. Group A was given normal saline the same way as Group B. The changes of FVmca using trans-cranial Doppler and moisture in brain tissues were observed. Results The normal value of FVmca was (31.8± 4.5)cm/s, while the value of FVmca in group A and B were (15.4± 3.9)cm/s and (22.1± 3.5)cm/s separately.Water content in damaged hemisphere in Group A and B were (81.54± 0.55)% and (79.35± 0.50)% respectively. There was a significant difference between the 2 groups (P<0.05). The levels of FVmca in group A and B were lower than that of control and there was also a significant difference between group A and B (P<0.05).Conclusions FVmca decreased and the brain moisture increased after brain injury while FVmca increased and the brain moisture reduced after treatment with dexamethasone. It demonstreated that local treatment of dexamethasone had an obvious therapeutical effect on brain injury.
基金This study was supported by Ruiyi Special Fund for Emergency Medicine Research(R2019019)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX20_0481).Ethical approval:。
文摘BACKGROUND:To assess the association between relevant brain computed tomography(CT)parameters at different time and neurological prognosis in adult comatose survivors after cardiac arrest(CA).METHODS:A total of 94 CA patients who underwent early and late CT scans(within 24 h and 24 h to 7 d respectively after CA)between January 2018 and April 2020 were enrolled in this retrospective study.According to the Cerebral Performance Category(CPC)score at hospital discharge,the patients were divided into either a good outcome(CPC 1-2)group or a poor-outcome group(CPC 3-5).The grey-to-white matter ratio(GWR)and the proportion of cerebrospinal fluid volume(pCSFV)were measured.In predicting poor outcomes,the prognostic performance of relevant CT parameters was evaluated,and the comparison analysis(expressed as the ratio of parameters in late CT to those in the early CT)of diff erent CT time was conducted.RESULTS:Totally 26 patients were in the good-outcome group,while 68 patients were in the poor-outcome group.The putamen density,GWR,and pCSFV in late CT were significantly lower in the poor-outcome group(P<0.05).The ratios of GWR and pCSFV in the poor-outcome group were signifi cantly decreased according to comparison analysis of diff erent CT time(P<0.05),while there was no signifi cant diff erence in the ratio of putamen density.GWR-basal ganglia<1.18 in late CT showed the best predictive value.The ratio of pCSFV<0.98 predicted unfavorable neurological outcomes with a sensitivity of 65.9%and a specifi city of 93.8%(P=0.001).CONCLUSIONS:Brain CT performed>24 h after CA may be a good choice as a neuroimaging approach to evaluating prognosis.To predict neurological prognosis,comparison analysis of diff erent CT time can be used as another promising tool in comatose CA survivors.
基金Supported by A grant from the Instituto de Salud CarlosTM,PI051371,PI080809
文摘AIM:To compare rifaximin and insulin-like growth factor(IGF)-1 treatment of hyperammonemia and brain edema in cirrhotic rats with portal occlusion.METHODS:Rats with CCl4-induced cirrhosis with ascites plus portal vein occlusion and controls were randomized into six groups:Cirrhosis;Cirrhosis + IGF-1;Cirrhosis + rifaximin;Controls;Controls + IGF-1;and Controls + rifaximin.An oral glutamine-challenge test was performed,and plasma and cerebral ammonia,glucose,bilirubin,transaminases,endotoxemia,brain water content and ileocecal cultures were measured and liver histology was assessed.RESULTS:Rifaximin treatment significantly reduced bacterial overgrowth and endotoxemia compared with cirrhosis groups,and improved some liver function parameters(bilirubin,alanine aminotransferase and aspartate aminotransferase).These effects were associated with a significant reduction in cerebral water content.Blood and cerebral ammonia levels,and area-underthe-curve values for oral glutamine-challenge tests were similar in rifaximin-treated cirrhotic rats and control group animals.By contrast,IGF-1 administration failed to improve most alterations observed in cirrhosis.CONCLUSION:By reducing gut bacterial overgrowth,only rifaximin was capable of normalizing plasma and brain ammonia and thereby abolishing low-grade brain edema,alterations associated with hepatic encephalopathy.
基金supported by the National Nature Science Foundation of China,Nos.81671207 and 81974189(both to HLT)。
文摘Sirtuin 2(SIRT2)inhibition or Sirt2 knocko ut in animal models protects against the development of neurodegenerative diseases and cerebral ischemia.However,the role of SIRT2 in traumatic brain injury(TBI)remains unclear.In this study,we found that knockout of Sirt2 in a mouse model of TBI reduced brain edema,attenuated dis ruption of the blood-brain barrie r,decreased expression of the nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3)inflammasome,reduced the activity of the effector caspase-1,reduced neuroinflammation and neuronal pyroptosis,and improved neurological function.Knoc kout of Sirt2 in a mechanical stretch injury cell model in vitro also decreased expression of the NLRP3 inflammasome and pyroptosis.Our findings suggest that knockout of Sirt2 is neuro protective against TBI;therefore.Sirt2 could be a novel to rget for TBI treatment.