期刊文献+
共找到339篇文章
< 1 2 17 >
每页显示 20 50 100
AI+BCI硅基碳基融合新智能的开始
1
作者 尹奎英 遇涛 《指挥控制与仿真》 2024年第3期1-11,共11页
我们正迎来人类发展的第四次浪潮,正处于从信息社会向人类社会-物理世界-信息空间融合的智能社会的关键转型期。近年来,计算和信息技术飞速发展,深度学习的空前普及和成功将人工智能(AI)确立为人类探索机器智能的前沿领域。与此同时,得... 我们正迎来人类发展的第四次浪潮,正处于从信息社会向人类社会-物理世界-信息空间融合的智能社会的关键转型期。近年来,计算和信息技术飞速发展,深度学习的空前普及和成功将人工智能(AI)确立为人类探索机器智能的前沿领域。与此同时,得益于器件的革命性进展和人工智能(AI)的发展,脑机接口(BCI)植入技术同样快速落地,这意味着BCI+AI碳基硅基融合的开始,然而,硅基和碳基运算的底层逻辑存在根本差异,脑的智能机制仍有待进一步探索。本研究提出的视觉认知引导的孪生AI深度网络,是由个人意识驱动的深度网络技术,通过捕捉并解析个体的思维模式和创意灵感,为每个用户量身打造独特的视觉世界。在这样的环境中,每个人都成为自己创造世界的视觉主导者,打破物质和意识的壁垒,得以展现丰富的个性和创造力。 展开更多
关键词 人工智能 脑机接口 人脑视觉表征 脑视觉重构 意识孪生
下载PDF
A Hybrid Brain-Computer Interface for Closed-Loop Position Control of a Robot Arm 被引量:8
2
作者 Arnab Rakshit Amit Konar Atulya K.Nagar 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1344-1360,共17页
Brain-Computer interfacing(BCI)has currently added a new dimension in assistive robotics.Existing braincomputer interfaces designed for position control applications suffer from two fundamental limitations.First,most ... Brain-Computer interfacing(BCI)has currently added a new dimension in assistive robotics.Existing braincomputer interfaces designed for position control applications suffer from two fundamental limitations.First,most of the existing schemes employ open-loop control,and thus are unable to track positional errors,resulting in failures in taking necessary online corrective actions.There are examples of a few works dealing with closed-loop electroencephalography(EEG)-based position control.These existing closed-loop brain-induced position control schemes employ a fixed order link selection rule,which often creates a bottleneck preventing time-efficient control.Second,the existing brain-induced position controllers are designed to generate a position response like a traditional firstorder system,resulting in a large steady-state error.This paper overcomes the above two limitations by keeping provisions for steady-state visual evoked potential(SSVEP)induced linkselection in an arbitrary order as required for efficient control and generating a second-order response of the position-control system with gradually diminishing overshoots/undershoots to reduce steady-state errors.Other than the above,the third innovation is to utilize motor imagery and P300 signals to design the hybrid brain-computer interfacing system for the said application with gradually diminishing error-margin using speed reversal at the zero-crossings of positional errors.Experiments undertaken reveal that the steady-state error is reduced to 0.2%.The paper also provides a thorough analysis of the stability of the closed-loop system performance using the Root Locus technique. 展开更多
关键词 Brain-computer interfacing(bci) electroencepha-lography(EEG) Jaco robot arm motor imagery P300 steady-state visually evoked potential(SSVEP)
下载PDF
Electric Wheelchair Control System Using Brain-Computer Interface Based on Alpha-Wave Blocking 被引量:2
3
作者 明东 付兰 +8 位作者 陈龙 汤佳贝 綦宏志 赵欣 周鹏 张力新 焦学军 王春慧 万柏坤 《Transactions of Tianjin University》 EI CAS 2014年第5期358-363,共6页
A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control... A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min. 展开更多
关键词 electric wheelchair alpha-wave blocking brain-computer interface (bci success control rate
下载PDF
Non-invasive EEG-based brain-computer interfaces in patients with disorders of consciousness 被引量:1
4
作者 Emilia Mikoajewska Dariusz Mikoajewski 《Journal of Medical Colleges of PLA(China)》 CAS 2014年第2期109-114,共6页
Disorders of consciousness(DoCs) are chronic conditions resulting usually from severe neurological deficits. The limitations of the existing diagnosis systems and methodologies cause a need for additional tools for re... Disorders of consciousness(DoCs) are chronic conditions resulting usually from severe neurological deficits. The limitations of the existing diagnosis systems and methodologies cause a need for additional tools for relevant patients with DoCs assessment, including brain-computer interfaces(BCIs). Recent progress in BCIs' clinical applications may offer important breakthroughs in the diagnosis and therapy of patients with DoCs. Thus the clinical significance of BCI applications in the diagnosis of patients with DoCs is hard to overestimate. One of them may be brain-computer interfaces. The aim of this study is to evaluate possibility of non-invasive EEG-based brain-computer interfaces in diagnosis of patients with DOCs in post-acute and long-term care institutions. 展开更多
关键词 neurological disorders disorders of consciousness brain-computer interfaces EEG-based bcis
下载PDF
Individualization of Data-Segment-Related Parameters for Improvement of EEG Signal Classification in Brain-Computer Interface 被引量:1
5
作者 曹红宝 BESIO Walter G +1 位作者 JONES Steven 周鹏 《Transactions of Tianjin University》 EI CAS 2010年第3期235-238,共4页
In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in... In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in an EEG-based brain-computer interface (BCI) was studied. An auto search algorithm was developed to study four datasegment-related parameters in each trial of 12 subjects’ EEG. The length of data segment (LDS), the start position of data (SPD) segment, AR order, and number of trials (NT) were used to build the model. The study showed that, compared with the classification ratio (CR) without parameter selection, the CR was increased by 20% to 30% with proper selection of these data-segment-related parameters, and the optimum parameter values were subject-dependent. This suggests that the data-segment-related parameters should be individualized when building models for BCI. 展开更多
关键词 data segment parameter selection EEG classification brain-computer interface (bci
下载PDF
EEG classification based on probabilistic neural network with supervised learning in brain computer interface 被引量:1
6
作者 吴婷 Yan Guozheng +1 位作者 Yang Banghua Sun Hong 《High Technology Letters》 EI CAS 2009年第4期384-387,共4页
Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented ... Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented in this paper. It applies the recognition rate of training samples to the learning progress of network parameters. The learning vector quantization is employed to group training samples and the Genetic algorithm (GA) is used for training the network' s smoothing parameters and hidden central vector for detemlining hidden neurons. Utilizing the standard dataset I (a) of BCI Competition 2003 and comparing with other classification methods, the experiment results show that the best performance of pattern recognition Js got in this way, and the classification accuracy can reach to 93.8%, which improves over 5% compared with the best result (88.7 % ) of the competition. This technology provides an effective way to EEG classification in practical system of BCI. 展开更多
关键词 Probabilistic neural network (PNN) supervised learning brain computer interface (bci electroencephalogram (EEG)
下载PDF
Performance and Implementations of Vibrotactile Brain-Computer Interface with Ipsilateral and Bilateral Stimuli
7
作者 SUN Hongyan JIN Jing +2 位作者 ZHANG Yu WANG Bei WANG Xingyu 《Journal of Donghua University(English Edition)》 EI CAS 2018年第6期439-445,共7页
The tactile P300 brain-computer interface( BCI) is related to the somatosensory perception and response of the human brain,and is different from visual or audio BCIs. Recently,several studies focused on the tactile st... The tactile P300 brain-computer interface( BCI) is related to the somatosensory perception and response of the human brain,and is different from visual or audio BCIs. Recently,several studies focused on the tactile stimuli delivered to different parts of the human body. Most of these stimuli were symmetrically bilateral.Only a fewstudies explored the influence of tactile stimuli laterality.In the current study,we extensively tested the performance of a vibrotactile BCI system using ipsilateral stimuli and bilateral stimuli.Two vibrotactile P300-based paradigms were tested. The target stimuli were located on the left and right forearms for the left forearm and right forearm( LFRF) paradigm,and on the left forearm and calf for the left forearm and left calf( LFLC)paradigm. Ten healthy subjects participated in this study. Our experiments and analysis showed that the bilateral paradigm( LFRF) elicited larger P300 amplitude and achieved significantly higher classification accuracy than the ipsilateral paradigm( LFLC). However, both paradigms achieved classification accuracies higher than 70% after the completion of several trials on average,which was usually regarded as the minimum accuracy level required for BCI system to be deemed useful. 展开更多
关键词 brain-computer interface (bci) tactile P300 IPSILATERAL stimuli BILATERAL stimuli paradigm LEFT FOREARM right FOREARM LEFT CALF
下载PDF
Double Deep Q-Network Decoder Based on EEG Brain-Computer Interface
8
作者 REN Min XU Renyu ZHU Ting 《ZTE Communications》 2023年第3期3-10,共8页
Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through elec... Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through electroencephalogram(EEG)and translated into neural intentions reflecting the user’s behavior.Correct decoding of the neural intentions then facilitates the control of external devices.Reinforcement learning-based BCIs enhance decoders to complete tasks based only on feedback signals(rewards)from the environment,building a general framework for dynamic mapping from neural intentions to actions that adapt to changing environments.However,using traditional reinforcement learning methods can have challenges such as the curse of dimensionality and poor generalization.Therefore,in this paper,we use deep reinforcement learning to construct decoders for the correct decoding of EEG signals,demonstrate its feasibility through experiments,and demonstrate its stronger generalization on motion imaging(MI)EEG data signals with high dynamic characteristics. 展开更多
关键词 brain-computer interface(bci) electroencephalogram(EEG) deep reinforcement learning(Deep RL) motion imaging(MI)generalizability
下载PDF
Design of an EEG Preamplifier for Brain-Computer Interface
9
作者 Xian-Jie Pu Tie-Jun Liu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期56-60,共5页
As a non-invasive neurophysiologieal index for brain-computer interface (BCI), electroencephalogram (EEG) attracts much attention at present. In order to have a portable BCI, a simple and efficient pre-amplifier i... As a non-invasive neurophysiologieal index for brain-computer interface (BCI), electroencephalogram (EEG) attracts much attention at present. In order to have a portable BCI, a simple and efficient pre-amplifier is crucial in practice. In this work, a preamplifier based on the characteristics of EEG signals is designed, which consists of a highly symmetrical input stage, low-pass filter, 50 Hz notch filter and a post amplifier. A prototype of this EEG module is fabricated and EEG data are obtained through an actual experiment. The results demonstrate that the EEG preamplifier will be a promising unit for BCI in the future. 展开更多
关键词 Brain-computer interface(bci) electroencephalogram(EEG) FILTERING interference pre amplifier.
下载PDF
基于P300电位的新型BCI中文输入虚拟键盘系统 被引量:20
10
作者 吴边 苏煜 +4 位作者 张剑慧 李昕 张吉财 陈卫东 郑筱祥 《电子学报》 EI CAS CSCD 北大核心 2009年第8期1733-1738,1745,共7页
近年来各种信号处理技术随着计算能力的提高取得了巨大进展,推动了人机交互(HCI)技术的发展.脑机接口(BCI)是一种特殊的人机交互通道,在最近几年引起广泛关注.P300电位是一种事件相关电位,利用诱发人类P300的原理,可以实现基于P300的BC... 近年来各种信号处理技术随着计算能力的提高取得了巨大进展,推动了人机交互(HCI)技术的发展.脑机接口(BCI)是一种特殊的人机交互通道,在最近几年引起广泛关注.P300电位是一种事件相关电位,利用诱发人类P300的原理,可以实现基于P300的BCI系统.此类系统以往常用于英文字母的输入,本研究首次设计并开发了一套进行汉字输入的在线P300-BCI系统.系统利用汉字基于笔画的特性简化了P300诱发界面,并据此设计了相应的汉字虚拟键盘.利用此系统进行的在线输入实验表明,此中文BCI的设计是可行的,对系统的进一步完善将可以为汉语系的瘫痪患者的机能恢复提供新的选项. 展开更多
关键词 脑机接口 P300 中文输入 虚拟键盘
下载PDF
用于BCI的脑电信号检测电路的设计 被引量:6
11
作者 马世伟 关俊强 +1 位作者 杨帮华 袁玲 《测控技术》 CSCD 北大核心 2009年第6期28-31,共4页
设计了一种新颖的用于脑机接口(BCI)的脑电信号检测电路,采用阻容耦合、共模信号取样驱动、有源屏蔽驱动和浮动电源等技术,具有结构简单、抗干扰能力强、稳定性和可靠性高的优点。经仿真分析和实际电路调试,证明该电路可有效抑制背景噪... 设计了一种新颖的用于脑机接口(BCI)的脑电信号检测电路,采用阻容耦合、共模信号取样驱动、有源屏蔽驱动和浮动电源等技术,具有结构简单、抗干扰能力强、稳定性和可靠性高的优点。经仿真分析和实际电路调试,证明该电路可有效抑制背景噪声和干扰,可用于BCI中实现对微弱低频脑电信号的提取。 展开更多
关键词 脑机接口 脑电信号 前置放大电路
下载PDF
稀疏降噪自编码器在IR-BCI的应用研究 被引量:4
12
作者 赵瑞娟 官金安 谢国栋 《计算机工程与应用》 CSCD 北大核心 2017年第11期167-171,共5页
针对脑-机接口的特征提取问题,提出了一种基于非监督学习的稀疏降噪自编码器,对刺激诱发的脑电信号进行自主学习,构建原始数据的深层特征表达。该编码器引用稀疏自编码神经网络,通过加入噪声,增强其学习的泛化能力,增加了神经网络的鲁... 针对脑-机接口的特征提取问题,提出了一种基于非监督学习的稀疏降噪自编码器,对刺激诱发的脑电信号进行自主学习,构建原始数据的深层特征表达。该编码器引用稀疏自编码神经网络,通过加入噪声,增强其学习的泛化能力,增加了神经网络的鲁棒性。首先对多导联信号进行重新拼接,输入稀疏降噪自编码器,得到原始数据的稀疏特征表达;然后,采用支持向量机将学习到的特征进行分类;最后,同直接使用最优单通道相对比。实验结果为:稀疏降噪自编码器的分类准确率要优于单通道,表明该方法能够更好地学习到特征,并提高了"模拟阅读"脑-机接口的识别正确率,为脑-机接口系统的特征提取和分类提供了新思路。 展开更多
关键词 模拟阅读 脑-机接口 非监督学习 稀疏降噪自编码器 支持向量机
下载PDF
基于LabWindows/CVI与Matlab混编的在线BCI系统 被引量:1
13
作者 郑晓明 杨帮华 +1 位作者 陆文宇 何美燕 《计算机应用与软件》 CSCD 北大核心 2012年第5期16-19,共4页
基于LabWindows/CVI和Matlab设计一个BCI在线控制系统,对8Hz~30Hz的运动想象脑电信号提取时域均值、中值偏差估计、瞬时能量均值、AR模型参数等特征,应用增量式支持向量机进行分类,实现人脑对虚拟汽车直接控制。系统采用了多线程技术,... 基于LabWindows/CVI和Matlab设计一个BCI在线控制系统,对8Hz~30Hz的运动想象脑电信号提取时域均值、中值偏差估计、瞬时能量均值、AR模型参数等特征,应用增量式支持向量机进行分类,实现人脑对虚拟汽车直接控制。系统采用了多线程技术,保证各项工作的同时进行,在CVI中完成脑电数据采集、Matlab调用和控制指令的发送,在Matlab中进行脑电模式识别,两个程序共同完成对虚拟汽车的运动控制。经过实际测试证明,该系统具有操作简单方便、界面友好、可扩展性强、效率和可靠性高等优点,进一步推动了BCI的应用。 展开更多
关键词 多线程 LABWINDOWS/CVI 虚拟仪器 MATLAB ACTIVEX 混合编程 脑电识别 脑机接口
下载PDF
便携式BCI设备快速自动去眼电伪迹算法的研究 被引量:1
14
作者 牛群峰 周季冬 +1 位作者 王莉 惠延波 《自动化与仪表》 2019年第2期103-108,共6页
针对多通道的去眼电伪迹研究目前已较为成熟,但是在便携式单通道脑电信号领域,尚未有一种十分有效快速去除眼电伪迹的方法。经验小波变换EWT是一种新型的自适应信号处理算法,相较于经验模态分解EMD算法存在模态混跌问题和集合经验模态分... 针对多通道的去眼电伪迹研究目前已较为成熟,但是在便携式单通道脑电信号领域,尚未有一种十分有效快速去除眼电伪迹的方法。经验小波变换EWT是一种新型的自适应信号处理算法,相较于经验模态分解EMD算法存在模态混跌问题和集合经验模态分解EEMD算法实时性不足的缺点,EWT将小波变换和EMD相结合克服了前者的缺点。基于此提出将EWT、典型相关分析CCA以及瑞利熵RE相结合的自动去眼电伪迹算法。试验表明,该方法可有效去除单通道脑电中的眼电伪迹,且快速自动,能满足便携式单通道脑机接口BCI的需求。 展开更多
关键词 单通道脑电信号 眼电伪迹 经验小波变换 典型相关分析 脑机接口
下载PDF
ASMI-BCI特征调制及分类性能研究
15
作者 边琰 赵丽 孙永 《电子测量与仪器学报》 CSCD 北大核心 2022年第3期224-230,共7页
基于运动想象(MI)的脑-机接口(BCI)近年来被应用于肢体运动功能的可塑性康复。采用视觉辅助刺激可以有效增强MI-BCI系统的分类性能,但视觉障碍患者无法使用。因此本文设计了基于听觉辅助刺激的ASMI-BCI,发现动态声音辅助刺激可以提高大... 基于运动想象(MI)的脑-机接口(BCI)近年来被应用于肢体运动功能的可塑性康复。采用视觉辅助刺激可以有效增强MI-BCI系统的分类性能,但视觉障碍患者无法使用。因此本文设计了基于听觉辅助刺激的ASMI-BCI,发现动态声音辅助刺激可以提高大脑运动相关皮层的兴奋性,增强系统的可分性特征。10名在校大学生(5男5女,平均22.6岁)3类实验范式(C-SW、C-DA、C-DV)的平均结果表明,C-SW范式分类正确率最低、C-DA次之、C-DV范式正确率最高。听觉辅助刺激范式的最优分类正确率可达76.03%,相比传统MI-BCI范式显著性提升了8.83%,且60%的被试使用该范式的分类正确率可高于70%。使用动态听觉辅助刺激范式可以为视觉障碍患者提供一种特征调制和BCI性能增强的新模式、新方法。 展开更多
关键词 脑-机接口 运动想象 听觉辅助刺激 特征调制 分类性能
下载PDF
脑机接口(BCI)系统的实时数据传输技术研究 被引量:2
16
作者 胥彪 石锐 何庆华 《计算机科学》 CSCD 北大核心 2007年第9期107-109,共3页
脑机接口(BCI)系统包含两大模块:脑电信号采集与处理。其中采集和处理程序间实时数据传输是需要解决的关键问题之一。本系统采用LabVIEW语言开发信号采集程序,考虑程序运行速度,信号处理程序用Visual C^(++)设计。本文对各种Windows下... 脑机接口(BCI)系统包含两大模块:脑电信号采集与处理。其中采集和处理程序间实时数据传输是需要解决的关键问题之一。本系统采用LabVIEW语言开发信号采集程序,考虑程序运行速度,信号处理程序用Visual C^(++)设计。本文对各种Windows下进程间通信(IPC)机制研究之后,提出用动态链接库(DLL)来实现基于文件映射的共享内存技术。实验结果表明,该技术能够很好地满足采集数据的大批量、高频率和多通道等要求。 展开更多
关键词 脑机接口(bci) 脑电 共享内存 文件映射 实时数据传输
下载PDF
SSSEP提升下肢MI-BCI系统性能及其多维脑电特征分析 被引量:2
17
作者 张力新 常美榕 +2 位作者 王仲朋 陈龙 明东 《中国生物医学工程学报》 CAS CSCD 北大核心 2021年第4期429-437,共9页
运动想象脑-机接口(MI-BCI)可解码用户运动意图,为无法自主运动患者提供一种额外交互控制通道,辅助或改善其生活方式。针对现有下肢MI-BCI分类性能较低等关键问题,引入了体感电刺激(ES)用于下肢MI-BCI构建混合范式(MI+ES),并与传统单一... 运动想象脑-机接口(MI-BCI)可解码用户运动意图,为无法自主运动患者提供一种额外交互控制通道,辅助或改善其生活方式。针对现有下肢MI-BCI分类性能较低等关键问题,引入了体感电刺激(ES)用于下肢MI-BCI构建混合范式(MI+ES),并与传统单一范式(MI)对比。共20名年轻健康右利手受试参与实验,5名参与最优诱发频率验证试验,15名参与正式实验。随后采集了参与正式实验的15名受试不同条件下脑电(EEG)数据,应用傅里叶变换(FFT)和事件相关谱扰动(ERSP)算法提取EEG频域响应、时频特征等,并计算alpha(8~14 Hz)、低beta(15~24 Hz)和高beta(25~35 Hz)等多频段能量变化。此外,分别探索了MI/(MI+ES)条件、共空间模式(CSP)/基于多频率成分的共空间模式(FBCSP)特征提取方法对下肢MI-BCI系统分类性能的影响。结果表明,引入体感电刺激策略可诱发明显的SSSEP特征,MI+ES条件分类准确率较单一MI条件有显著性提升(P<0.001),且应用FBCSP方法的系统分类准确率显著优于经典CSP方法(P<0.01):CSP特征提取方法下MI+ES条件的平均分类准确率为70.2%,其中受试S15的分类准确率达84.2%;FBCSP方法下的平均分类准确率为71.7%,受试S15的分类结果达到90%。初步证实了受试在体感电刺激条件下可诱发出明显的SSSEP特征,而且其融合MI可有效提升下肢MI-BCI分类性能,可支撑下肢MI-BCI系统的实用化进程,也为外周神经相关体感刺激调控方法的优化设计提供了新的技术思路。 展开更多
关键词 下肢运动想象 脑-机接口(bci) 稳态体感诱发电位(SSSEP) 事件相关谱扰动 分类识别
下载PDF
SSVEP-BCI抗自由眨眼稳定性的ANFIS方法 被引量:1
18
作者 陆竹风 张小栋 +2 位作者 张黎明 李瀚哲 李睿 《振动.测试与诊断》 EI CSCD 北大核心 2019年第4期727-732,901,共7页
针对伪迹干扰下脑机接口稳定性问题,以自由眨眼动作下稳态视觉诱发脑机接口的稳定性为切入点,进行了稳态视觉诱发脑电信号去眼电伪迹(electroculography,简称EOG)研究。提出了一种基于自适应神经模糊推理系统(adaptive neuro-fuzzy infe... 针对伪迹干扰下脑机接口稳定性问题,以自由眨眼动作下稳态视觉诱发脑机接口的稳定性为切入点,进行了稳态视觉诱发脑电信号去眼电伪迹(electroculography,简称EOG)研究。提出了一种基于自适应神经模糊推理系统(adaptive neuro-fuzzy inferency system,简称ANFIS)的无眼电电极下脑电信号眼电伪迹的自适应消除方法并进行实验,验证该方法对自由眨眼动作下稳态视觉诱发脑机接口稳定性的提高。该伪迹消除方法通过自适应神经模糊推理系统逼近眼电信号源至眼电伪迹的非线性变换函数,达到消除脑电信号中眼电伪迹的目的。算法通过前额叶区脑电信号获得替代性眼电信号源,经延时处理后,输入自适应噪声消除器中以消除各通道脑电信号中的眼电伪迹。通过自由眨眼动作下稳态视觉刺激实验,对该伪迹消除方法中各参数及函数的选择进行了研究,并将该方法与经典滤波和传统独立成分分析(independent component analysis,简称ICA)进行对比,证明了该方法在消除眼电伪迹的情况下保留了稳态视觉刺激的有效信息,识别正确率较经典滤波相比最高提高了6.25%,较传统ICA相比最高提高10%,保证了稳态视觉诱发脑机接口在自由眨眼动作下的稳定性。 展开更多
关键词 脑机接口 脑电信号 稳态视觉诱发脑电信号 眼电伪迹 自适应神经模糊推理系统
下载PDF
整合贝叶斯动态停止策略对SSVEP-BCIs的性能提升研究 被引量:5
19
作者 江京 许敏鹏 +2 位作者 印二威 王春慧 明东 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第5期65-72,共8页
由于大脑的状态处于不断变化中,因此提取自脑电图中的特征,其质量并不总是足够高以保证脑-机接口(BCI)的可靠输出。提出了基于贝叶斯估计的动态停止(DS)策略,并将其整合到基于稳态视觉诱发电位(SSVEP)的BCI系统中,以进一步优化和... 由于大脑的状态处于不断变化中,因此提取自脑电图中的特征,其质量并不总是足够高以保证脑-机接口(BCI)的可靠输出。提出了基于贝叶斯估计的动态停止(DS)策略,并将其整合到基于稳态视觉诱发电位(SSVEP)的BCI系统中,以进一步优化和提升SSVEP-BCIs的性能。10人次的实验结果表明,相比于传统的静态停止(FS)策略,DS策略能有效提升信息传输率(ITR),尤其是使用扩展的典型相关分析的DS策略相比FS策略提升了7.85%。另外,使用总体任务相关成分分析的DS策略得到的平均和最高ITR分别是352.3和435.7 bits/min。因此,证明了通过整合DS策略可以进一步提升SSVEP-BCIs的性能,并有希望推广到实际应用。 展开更多
关键词 脑-机接口 稳态视觉诱发电位 脑电图 动态停止策略 典型相关分析 任务相关成分分析
下载PDF
Embedded BCI Rehabilitation System for Stroke 被引量:2
20
作者 Wanzeng Kong Siman Fu +3 位作者 Bin Deng Hong Zeng Jianhai Zhang Shijie Guo 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期35-41,共7页
In stroke rehabilitation,rehabilitation equipments can help with the training.But traditional equipments are not convenient to carry,which limits patients to use related rehabilitation techniques.To solve this kind of... In stroke rehabilitation,rehabilitation equipments can help with the training.But traditional equipments are not convenient to carry,which limits patients to use related rehabilitation techniques.To solve this kind of problem,a new embedded rehabilitation system based on brain computer interface(BCI)is proposed in this paper.The system is based on motor imagery(MI)therapy,in which electroencephalogram(EEG)is evoked by grasping motor imageries of left and right hands,then collected by a wearable device.The EEG is transmitted to a Raspberry Pie processing unit through Bluetooth and decoded as the instructions to control the equipment extension.Users experience the limb movement through the visual feedback so as to achieve active rehabilitation.A pilot study shows that the user can control the movement of the rehabilitation equipment through his mind,and the equipment is convenient to carry.The study provides a new way to stroke rehabilitation. 展开更多
关键词 STROKE REHABILITATION EMBEDDED brain computer interface(bci) MOTOR imagery(MI)
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部