Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times...Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times as high as one of iron and steel brake disk, the thermal expansion value of the aluminum brake disk is 2 times as big as one of iron and steel brake disk. Mechanical property of the material decreases with the temperature increasing generally during braking, on the other hand, the big thermal stress in the brake disk happens because the material expansion is constrained. Firstly, the reasons of the thermal stress generation and the fracture failure of brake disks during braking are analyzed qualitatively by virtue of three-bar stress frame and sandwich deformation principles in physic, and then the five constraints which cause the thermal stress are summarized. On the base of the experimental results on the 1:1 emergency brake test, the thermal stress and temperature fields are simulated; The behavior of the fracture failure is interpreted semi-quantitatively by finite element analysis, There is the coincident forecast for the fraction position in term of the two methods. In the end, in the light of the analysis and calculation results, it is the general principles observed by the structure design and assembly of the brake disk that are summarized.展开更多
Increasing operating speed of modern passenger railway vehicles leads to higher thermal load onthe braking system. Organic composite brake pads are poor thermal conductors, hence frictionalheat is absorbed mainly by t...Increasing operating speed of modern passenger railway vehicles leads to higher thermal load onthe braking system. Organic composite brake pads are poor thermal conductors, hence frictionalheat is absorbed mainly by the disc. In this study three brake pad types were tested on thedynamometer. Metallic fibres, steel and copper, were introduced to the formulation of twomaterials. The third was a non-metallic material - a reference case. Dynamometer test comprisedemergency brake applications to determine the frictional characteristics of the materials andconstant-power drag braking to analyse the effect of metal fibres on temperature evolution,measured by six thermocouples embedded in the brake disc. Mean friction coefficient is analysedand discussed. It is concluded that conductive fibre in the friction material formulation mayinfluence its tribological characteristics. Despite high thermal conductivity, metal fibres in theconcentration tested in this study, did not reduce temperature of the brake disc.展开更多
In this study, the thermo-elastic effects of frictional heat generation in a disc brake system due to braking actions were simulated. The mathematical model that defined the problem was developed from the kinetic and ...In this study, the thermo-elastic effects of frictional heat generation in a disc brake system due to braking actions were simulated. The mathematical model that defined the problem was developed from the kinetic and potential energies of moving vehicles on the gradient surfaces. This problem was solved for the selected geometry of disc brake and pad with their material properties selected from existing literatures using the finite element method and the computational results were obtained. The thermal deformation obtained was in good agreement with similar literature results. Also, for the same braking period and conditions, the results showed that a vehicle ascending a hill gave a higher temperature rise, Von Mises stress and thermal deformation on brake contact surfaces than when descending hill. Therefore, the braking period required to bring a moving vehicle in ascendent motion to a lower speed is expected to be shorter because of the gravity effect than horizontal motion, while descendent motion requires longer braking period.展开更多
The thermal cracking and wear mechanism of rail wheel tread have been studied.The results showed that the thermal cracking of rail wheel tread is related to the chemical composition (mainly the carbon content)and the ...The thermal cracking and wear mechanism of rail wheel tread have been studied.The results showed that the thermal cracking of rail wheel tread is related to the chemical composition (mainly the carbon content)and the hardness of the wheels.When the composite braking shoes are used,the rate of wear of the wheel tread is related to the fracture toughness of the newly-formed“white layer”i.e.the martensite.The thermal cracking proof wheels(55SiMn) so far developed has achieved significant operating results in practical use.展开更多
The characterization of the performances of a PV cell is linked to intrinsic factors of this cell. It is therefore important for us to identify the favorable or unfavorable conditions that affect the performance of PV...The characterization of the performances of a PV cell is linked to intrinsic factors of this cell. It is therefore important for us to identify the favorable or unfavorable conditions that affect the performance of PV cells. It is from this perspective that it seems judicious to us to study the simultaneous influence of the heating of the base and an external electric field on the performance of a PV cell under intense illumination of 50 suns. Two phenomena contribute to the heating of the base of a PV cell which is heating due to the transfer by conduction of solar radiation energy received by the surface of the PV cell and the heat generated inside the PV cell by various phenomena linked to the movement of photogenerated charged carriers. In this study, we take into account the heating linked to the movement of the charged carriers in the base. After a mathematical modeling of the PV cell considered, some hypotheses are formulated and the expressions of the electrical parameters are established as a function of the electric field and base temperature. Subsequently, we use numerical simulation to highlight the behavior of theses parameters as a function of temperature and of the intensity of the electric field. The results show that for any given temperature, the orientation of the electric field as considered in our work improves the performance of the PV cell while high temperatures degrade these performances. Furthermore, the analysis of the curves shows that the harmful effect of temperature on the performance of a PV cell is more accentuated at large values of electric field.展开更多
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program,No.2003AA331190).
文摘Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times as high as one of iron and steel brake disk, the thermal expansion value of the aluminum brake disk is 2 times as big as one of iron and steel brake disk. Mechanical property of the material decreases with the temperature increasing generally during braking, on the other hand, the big thermal stress in the brake disk happens because the material expansion is constrained. Firstly, the reasons of the thermal stress generation and the fracture failure of brake disks during braking are analyzed qualitatively by virtue of three-bar stress frame and sandwich deformation principles in physic, and then the five constraints which cause the thermal stress are summarized. On the base of the experimental results on the 1:1 emergency brake test, the thermal stress and temperature fields are simulated; The behavior of the fracture failure is interpreted semi-quantitatively by finite element analysis, There is the coincident forecast for the fraction position in term of the two methods. In the end, in the light of the analysis and calculation results, it is the general principles observed by the structure design and assembly of the brake disk that are summarized.
基金supported by the National Science Centre of Poland (Research project No. 2017/27/B/ST8/01249)
文摘Increasing operating speed of modern passenger railway vehicles leads to higher thermal load onthe braking system. Organic composite brake pads are poor thermal conductors, hence frictionalheat is absorbed mainly by the disc. In this study three brake pad types were tested on thedynamometer. Metallic fibres, steel and copper, were introduced to the formulation of twomaterials. The third was a non-metallic material - a reference case. Dynamometer test comprisedemergency brake applications to determine the frictional characteristics of the materials andconstant-power drag braking to analyse the effect of metal fibres on temperature evolution,measured by six thermocouples embedded in the brake disc. Mean friction coefficient is analysedand discussed. It is concluded that conductive fibre in the friction material formulation mayinfluence its tribological characteristics. Despite high thermal conductivity, metal fibres in theconcentration tested in this study, did not reduce temperature of the brake disc.
文摘In this study, the thermo-elastic effects of frictional heat generation in a disc brake system due to braking actions were simulated. The mathematical model that defined the problem was developed from the kinetic and potential energies of moving vehicles on the gradient surfaces. This problem was solved for the selected geometry of disc brake and pad with their material properties selected from existing literatures using the finite element method and the computational results were obtained. The thermal deformation obtained was in good agreement with similar literature results. Also, for the same braking period and conditions, the results showed that a vehicle ascending a hill gave a higher temperature rise, Von Mises stress and thermal deformation on brake contact surfaces than when descending hill. Therefore, the braking period required to bring a moving vehicle in ascendent motion to a lower speed is expected to be shorter because of the gravity effect than horizontal motion, while descendent motion requires longer braking period.
文摘The thermal cracking and wear mechanism of rail wheel tread have been studied.The results showed that the thermal cracking of rail wheel tread is related to the chemical composition (mainly the carbon content)and the hardness of the wheels.When the composite braking shoes are used,the rate of wear of the wheel tread is related to the fracture toughness of the newly-formed“white layer”i.e.the martensite.The thermal cracking proof wheels(55SiMn) so far developed has achieved significant operating results in practical use.
文摘The characterization of the performances of a PV cell is linked to intrinsic factors of this cell. It is therefore important for us to identify the favorable or unfavorable conditions that affect the performance of PV cells. It is from this perspective that it seems judicious to us to study the simultaneous influence of the heating of the base and an external electric field on the performance of a PV cell under intense illumination of 50 suns. Two phenomena contribute to the heating of the base of a PV cell which is heating due to the transfer by conduction of solar radiation energy received by the surface of the PV cell and the heat generated inside the PV cell by various phenomena linked to the movement of photogenerated charged carriers. In this study, we take into account the heating linked to the movement of the charged carriers in the base. After a mathematical modeling of the PV cell considered, some hypotheses are formulated and the expressions of the electrical parameters are established as a function of the electric field and base temperature. Subsequently, we use numerical simulation to highlight the behavior of theses parameters as a function of temperature and of the intensity of the electric field. The results show that for any given temperature, the orientation of the electric field as considered in our work improves the performance of the PV cell while high temperatures degrade these performances. Furthermore, the analysis of the curves shows that the harmful effect of temperature on the performance of a PV cell is more accentuated at large values of electric field.