期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of torque transmitting behavior and wheel slip prevention control during regenerative braking for high speed EMU trains 被引量:4
1
作者 Kun Xu Guo-Qing Xu Chun-Hua Zheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期244-251,共8页
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recover... The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology. 展开更多
关键词 High speed electric multiple unit(EMU) train Regenerative braking Wheel-rail adhesion Optimal slip ratio
下载PDF
Recurrent Autoencoder Ensembles for Brake Operating Unit Anomaly Detection on Metro Vehicles
2
作者 Jaeyong Kang Chul-Su Kim +1 位作者 Jeong Won Kang Jeonghwan Gwak 《Computers, Materials & Continua》 SCIE EI 2022年第10期1-14,共14页
The anomaly detection of the brake operating unit (BOU) in thebrake systems on metro vehicle is critical for the safety and reliability ofthe trains. On the other hand, current periodic inspection and maintenanceare u... The anomaly detection of the brake operating unit (BOU) in thebrake systems on metro vehicle is critical for the safety and reliability ofthe trains. On the other hand, current periodic inspection and maintenanceare unable to detect anomalies in an early stage. Also, building an accurateand stable system for detecting anomalies is extremely difficult. Therefore,we present an efficient model that use an ensemble of recurrent autoencodersto accurately detect the BOU abnormalities of metro trains. This is the firstproposal to employ an ensemble deep learning technique to detect BOUabnormalities in metro train braking systems. One of the anomalous caseson metro vehicles is the case when the air cylinder (AC) pressures are less thanthe brake cylinder (BC) pressures in certain parts where the brake pressuresincrease before coming to a halt. Hence, in this work, we first extract the dataof BC and AC pressures. Then, the extracted data of BC and AC pressuresare divided into multiple subsequences that are used as an input for bothbi-directional long short-term memory (biLSTM) and bi-directional gatedrecurrent unit (biGRU) autoencoders. The biLSTM and biGRU autoencodersare trained using training dataset that only contains normal subsequences. Fordetecting abnormalities from test dataset which consists of abnormal subsequences, the mean absolute errors (MAEs) between original subsequences andreconstructed subsequences from both biLSTM and biGRU autoencoders arecalculated. As an ensemble step, the total error is calculated by averaging twoMAEs from biLSTM and biGRU autoencoders. The subsequence with totalerror greater than a pre-defined threshold value is considered an abnormality.We carried out the experiments using the BOU dataset on metro vehiclesin South Korea. Experimental results demonstrate that the ensemble modelshows better performance than other autoencoder-based models, which showsthe effectiveness of our ensemble model for detecting BOU anomalies onmetro trains. 展开更多
关键词 Anomaly detection brake operating unit deep learning machine learning signal processing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部