Aiming at high cost and low efficiency of conventional branch bending method in the modern intensive planting and labor-saving cultivation mode of young pear trees,this paper provides a new branch bending method with ...Aiming at high cost and low efficiency of conventional branch bending method in the modern intensive planting and labor-saving cultivation mode of young pear trees,this paper provides a new branch bending method with wide source of raw materials,cheap price and simple operation,which is also suitable for the management of low-age branches in the process of high grafting and upgrading of traditional big trees.展开更多
This paper proposes a heuristic algorithm, called list-based squeezing branch and bound algorithm, for solving a machine-fixed, machining-assembly flowshop scheduling problem to minimize makespan. The machine-fixed, m...This paper proposes a heuristic algorithm, called list-based squeezing branch and bound algorithm, for solving a machine-fixed, machining-assembly flowshop scheduling problem to minimize makespan. The machine-fixed, machining-assembly flowshop consists of some parallel two-machine flow lines at a machining stage and one robot at an assembly stage. Since an optimal schedule for this problem is not always a permutation schedule, the proposed algorithm first finds a promising permutation schedule, and then searches better non-permutation schedules near the promising permutation schedule in an enumerative manner by elaborating a branching procedure in a branch and bound algorithm. The results of numerical experiments show that the proposed algorithm can efficiently provide an optimal or a near-optimal schedule with high accuracy such as mean relative error being less than 0.2% and the maximum relative error being at most 3%.展开更多
The general m-machine permutation flowshop problem with the total flow-time objective is known to be NP-hard for m ≥ 2. The only practical method for finding optimal solutions has been branch-and-bound algorithms. In...The general m-machine permutation flowshop problem with the total flow-time objective is known to be NP-hard for m ≥ 2. The only practical method for finding optimal solutions has been branch-and-bound algorithms. In this paper, we present an improved sequential algorithm which is based on a strict alternation of Generation and Exploration execution modes as well as Depth-First/Best-First hybrid strategies. The experimental results show that the proposed scheme exhibits improved performance compared with the algorithm in [1]. More importantly, our method can be easily extended and implemented with lightweight threads to speed up the execution times. Good speedups can be obtained on shared-memory multicore systems.展开更多
At present, associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials. So the stress characteristic line conforms to the velocity line...At present, associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials. So the stress characteristic line conforms to the velocity line. It is proved that geotechnical materials do not abide by the associated flow rule. It is impossible for the stress characteristic line to conform to the velocity line. Generalized plastic mechanics theoretically proved that plastic potential surface intersects the Mohr-Coulomb yield surface with an angle, so that the velocity line must be studied by non-associated flow rule. According to limit analysis theory, the theory of slip line field is put forward in this paper, and then the ultimate beating capacity of strip footing is obtained based on the associated flow rule and the non-associated flow nile individually. These two results are identical since the ultimate bearing capacity is independent of flow role. On the contrary, the velocity fields of associated and non-associated flow rules are different which shows the velocity field based on the associat- ed flow rule is incorrect.展开更多
Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories o...Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.展开更多
In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding ...In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.展开更多
In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log ...In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log h) of the running time for the general sequential B&B algorithm and the lower bound Ω(m/p+h log p) for the general parallel best-first B&B algorithm in PRAM-CREW are proposed, where p is the number of processors available. Moreover, the lower bound Ω(M/p+H+(H/p) log (H/p)) is presented for the parallel algorithms on distributed memory system, where M and H represent total number of the active nodes and that of the expanded nodes processed by p processors, respectively. In addition, a nearly fastest general parallel best-first B&B algorithm is put forward. The parallel algorithm is the fastest one as p = max{hε, r}, where ε = 1/ rootlogh, and r is the largest branch number of the nodes in the state-space tree.展开更多
In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial ...In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.展开更多
In this paper, we obtain the Berry-Esseen bound for identically distributed random variables by Stein method. The results obtained generalize the results of Shao and Su (2006) and Stein (1986).
This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denote...This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.展开更多
The primary goal of a phase I clinical trial is to find the maximum tolerable dose of a treatment. In this paper, we propose a new stepwise method based on confidence bound and information incorporation to determine t...The primary goal of a phase I clinical trial is to find the maximum tolerable dose of a treatment. In this paper, we propose a new stepwise method based on confidence bound and information incorporation to determine the maximum tolerable dose among given dose levels. On the one hand, in order to avoid severe even fatal toxicity to occur and reduce the experimental subjects, the new method is executed from the lowest dose level, and then goes on in a stepwise fashion. On the other hand, in order to improve the accuracy of the recommendation, the final recommendation of the maximum tolerable dose is accomplished through the information incorporation of an additional experimental cohort at the same dose level. Furthermore, empirical simulation results show that the new method has some real advantages in comparison with the modified continual reassessment method.展开更多
In this paper,a new algorithm relaxation-strategy-based modification branchand-bound algorithm is developed for a type of solving the minimum cost transportationproduction problem with concave production costs.The maj...In this paper,a new algorithm relaxation-strategy-based modification branchand-bound algorithm is developed for a type of solving the minimum cost transportationproduction problem with concave production costs.The major improvement of the proposed new method is that modification algorithm reinforces the bounding operation using a Lagrangian relaxation,which is a concave minimization but obtains a tighter bound than the usual linear programming relaxation.Some computational results are included.Computation results indicate that the algorithm can solve fairly large scale problems.展开更多
In decades,the battlefield environment is becoming more and more complex with plenty of electronic equipments.Thus,in order to improve the survivability of radar sensors and satisfy the requirement of maneuvering targ...In decades,the battlefield environment is becoming more and more complex with plenty of electronic equipments.Thus,in order to improve the survivability of radar sensors and satisfy the requirement of maneuvering target tracking with a low probability of intercept,a non-myopic scheduling is proposed to minimize the radiation cost with tracking accuracy constraint.At first,the scheduling problem is formulated as a partially observable Markov decision process(POMDP).Then the tracking accuracy and radiation cost over the future finite time horizon are predicted by the posterior carmer-rao lower bound(PCRLB) and the hidden Markov model filter,respectively.Finally,the proposed scheduling is implemented efficiently by utilizing the branch and bound(B&B) pruning algorithm.Simulation results show that the performance of maneuvering target tracking was improved by the improved interacting multiple model(IMM),and the scheduler time and maximum memory consumption were significant reduced by the present B&B pruning algorithm without losing the optimal solution.展开更多
Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the labo...Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil-root with branches interface is determined through the pullout-force and root-slippage curve (F-S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The sig- nificance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage.展开更多
The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure cons...The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.展开更多
Based on the lower bound theorem of limit analysis, a solution procedure for limit analysis of three_dimensional elastoplastic structures was established using conventional boundary element method (BEM). The elastic s...Based on the lower bound theorem of limit analysis, a solution procedure for limit analysis of three_dimensional elastoplastic structures was established using conventional boundary element method (BEM). The elastic stress field for lower bound limit analysis was computed directly by three_dimensional boundary element method (3_D BEM). The self_equilibrium stress field was constructed by the linear combination of several self_equilibrium “basis vectors” which can be computed by elastic_plastic incremental iteration of 3_D BEM analysis. The lower bound limit analysis problem was finally reduced to a series of nonlinear programming sub_problems with relatively few optimal variables. The complex method was used to solve the nonlinear programming sub_problems. The numerical results show that the present solution procedure has good accuracy and high efficiency.展开更多
The prediction of central bursting defects in the rod extrusion process through conical dies using the upper bound analysisis investigated. A kinematically admissible velocity field, including the radial and angular v...The prediction of central bursting defects in the rod extrusion process through conical dies using the upper bound analysisis investigated. A kinematically admissible velocity field, including the radial and angular velocity components, is proposed. A newcriterion is presented to predict the occurrence of the central bursting defects. Parameter bobt, which represents the risk probability ofcracking, is proposed. It is calculated using the shape of the boundary at the entrance by minimizing the total power dissipationduring the extrusion process. When bobt is equal to or greater than bcr, central bursting occurs. Furthermore, the quantitativerelationships between central bursting defects and process parameters (semi die angle, reduction in area and frictional factor) arestudied. The results show that the central bursting defects are affected primarily by the reduction in area and the friction factor. Thepresented criterion is verified by comparing with the FEM simulation data and the results of the published paper.展开更多
基金Technology Innovation Special Project of Hebei Academy of Agriculture and Forestry Sciences(2022KJCXZX-CGS-7,2023KJCXZX-CGS-11)Key Research and Development Program of Hebei Province(21326308D-1-2)+1 种基金Hebei Agriculture Research System(HBCT2024170406)China Agricultural(Pear)Research System(CARS-28-27).
文摘Aiming at high cost and low efficiency of conventional branch bending method in the modern intensive planting and labor-saving cultivation mode of young pear trees,this paper provides a new branch bending method with wide source of raw materials,cheap price and simple operation,which is also suitable for the management of low-age branches in the process of high grafting and upgrading of traditional big trees.
文摘This paper proposes a heuristic algorithm, called list-based squeezing branch and bound algorithm, for solving a machine-fixed, machining-assembly flowshop scheduling problem to minimize makespan. The machine-fixed, machining-assembly flowshop consists of some parallel two-machine flow lines at a machining stage and one robot at an assembly stage. Since an optimal schedule for this problem is not always a permutation schedule, the proposed algorithm first finds a promising permutation schedule, and then searches better non-permutation schedules near the promising permutation schedule in an enumerative manner by elaborating a branching procedure in a branch and bound algorithm. The results of numerical experiments show that the proposed algorithm can efficiently provide an optimal or a near-optimal schedule with high accuracy such as mean relative error being less than 0.2% and the maximum relative error being at most 3%.
文摘The general m-machine permutation flowshop problem with the total flow-time objective is known to be NP-hard for m ≥ 2. The only practical method for finding optimal solutions has been branch-and-bound algorithms. In this paper, we present an improved sequential algorithm which is based on a strict alternation of Generation and Exploration execution modes as well as Depth-First/Best-First hybrid strategies. The experimental results show that the proposed scheme exhibits improved performance compared with the algorithm in [1]. More importantly, our method can be easily extended and implemented with lightweight threads to speed up the execution times. Good speedups can be obtained on shared-memory multicore systems.
文摘At present, associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials. So the stress characteristic line conforms to the velocity line. It is proved that geotechnical materials do not abide by the associated flow rule. It is impossible for the stress characteristic line to conform to the velocity line. Generalized plastic mechanics theoretically proved that plastic potential surface intersects the Mohr-Coulomb yield surface with an angle, so that the velocity line must be studied by non-associated flow rule. According to limit analysis theory, the theory of slip line field is put forward in this paper, and then the ultimate beating capacity of strip footing is obtained based on the associated flow rule and the non-associated flow nile individually. These two results are identical since the ultimate bearing capacity is independent of flow role. On the contrary, the velocity fields of associated and non-associated flow rules are different which shows the velocity field based on the associat- ed flow rule is incorrect.
基金The project supported by the National Outstanding Youth Science Foundation of China (10425208)the National Natural Science Foundation of ChinaInstitute of Engineering Physics of China (10376002) The English text was polished by Keren Wang
文摘Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.
基金Project supported by the National Natural Science Foundation of China (Grant No.10571116)
文摘In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.
基金This paper was supported by Ph. D. Foundation of State Education Commission of China.
文摘In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log h) of the running time for the general sequential B&B algorithm and the lower bound Ω(m/p+h log p) for the general parallel best-first B&B algorithm in PRAM-CREW are proposed, where p is the number of processors available. Moreover, the lower bound Ω(M/p+H+(H/p) log (H/p)) is presented for the parallel algorithms on distributed memory system, where M and H represent total number of the active nodes and that of the expanded nodes processed by p processors, respectively. In addition, a nearly fastest general parallel best-first B&B algorithm is put forward. The parallel algorithm is the fastest one as p = max{hε, r}, where ε = 1/ rootlogh, and r is the largest branch number of the nodes in the state-space tree.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.70518001. 70671064)
文摘In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.
基金Supported by the National Natural Science Foundation of China (11101364)the Zhejiang Natural Science Foundation of China (Y6110110)
文摘In this paper, we obtain the Berry-Esseen bound for identically distributed random variables by Stein method. The results obtained generalize the results of Shao and Su (2006) and Stein (1986).
文摘This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.
文摘The primary goal of a phase I clinical trial is to find the maximum tolerable dose of a treatment. In this paper, we propose a new stepwise method based on confidence bound and information incorporation to determine the maximum tolerable dose among given dose levels. On the one hand, in order to avoid severe even fatal toxicity to occur and reduce the experimental subjects, the new method is executed from the lowest dose level, and then goes on in a stepwise fashion. On the other hand, in order to improve the accuracy of the recommendation, the final recommendation of the maximum tolerable dose is accomplished through the information incorporation of an additional experimental cohort at the same dose level. Furthermore, empirical simulation results show that the new method has some real advantages in comparison with the modified continual reassessment method.
基金Foundation item: Supported by the National Natural Science Foundation of China(10726016) Supported by the Hubei Province Natural Science Foundation Project(T200809 D200613002)
文摘In this paper,a new algorithm relaxation-strategy-based modification branchand-bound algorithm is developed for a type of solving the minimum cost transportationproduction problem with concave production costs.The major improvement of the proposed new method is that modification algorithm reinforces the bounding operation using a Lagrangian relaxation,which is a concave minimization but obtains a tighter bound than the usual linear programming relaxation.Some computational results are included.Computation results indicate that the algorithm can solve fairly large scale problems.
基金supported by the National Defense Pre-research Foundation of China(012015012600A2203)。
文摘In decades,the battlefield environment is becoming more and more complex with plenty of electronic equipments.Thus,in order to improve the survivability of radar sensors and satisfy the requirement of maneuvering target tracking with a low probability of intercept,a non-myopic scheduling is proposed to minimize the radiation cost with tracking accuracy constraint.At first,the scheduling problem is formulated as a partially observable Markov decision process(POMDP).Then the tracking accuracy and radiation cost over the future finite time horizon are predicted by the posterior carmer-rao lower bound(PCRLB) and the hidden Markov model filter,respectively.Finally,the proposed scheduling is implemented efficiently by utilizing the branch and bound(B&B) pruning algorithm.Simulation results show that the performance of maneuvering target tracking was improved by the improved interacting multiple model(IMM),and the scheduler time and maximum memory consumption were significant reduced by the present B&B pruning algorithm without losing the optimal solution.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.YX2010-20)the National Natural Science Foundation of China(No.31570708,No.30901162)the Open Projects Foundation of Key Laboratory of Soil and Water Conservation&Desertification Combat(Beijing Forestry University),Ministry of Education of China(No.201002)
文摘Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil-root with branches interface is determined through the pullout-force and root-slippage curve (F-S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The sig- nificance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage.
基金supported by National Natural Science Foundation of China(Grants No.50875174,51175347)Innovation Program of Shanghai Municipal Education Commission(Grant No.13ZZ114)Capacity Building Project of Local University of Shanghai Municipal Science and Technology Commission(Grant No.13160502500)
文摘The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.
文摘Based on the lower bound theorem of limit analysis, a solution procedure for limit analysis of three_dimensional elastoplastic structures was established using conventional boundary element method (BEM). The elastic stress field for lower bound limit analysis was computed directly by three_dimensional boundary element method (3_D BEM). The self_equilibrium stress field was constructed by the linear combination of several self_equilibrium “basis vectors” which can be computed by elastic_plastic incremental iteration of 3_D BEM analysis. The lower bound limit analysis problem was finally reduced to a series of nonlinear programming sub_problems with relatively few optimal variables. The complex method was used to solve the nonlinear programming sub_problems. The numerical results show that the present solution procedure has good accuracy and high efficiency.
文摘The prediction of central bursting defects in the rod extrusion process through conical dies using the upper bound analysisis investigated. A kinematically admissible velocity field, including the radial and angular velocity components, is proposed. A newcriterion is presented to predict the occurrence of the central bursting defects. Parameter bobt, which represents the risk probability ofcracking, is proposed. It is calculated using the shape of the boundary at the entrance by minimizing the total power dissipationduring the extrusion process. When bobt is equal to or greater than bcr, central bursting occurs. Furthermore, the quantitativerelationships between central bursting defects and process parameters (semi die angle, reduction in area and frictional factor) arestudied. The results show that the central bursting defects are affected primarily by the reduction in area and the friction factor. Thepresented criterion is verified by comparing with the FEM simulation data and the results of the published paper.